Воздухопроницаемость строительных материалов. Воздухопроницаемость ограждающих конструкций Какая паропроницаемость у строительных материалов

Таблица паропроницаемости - это полная сводная таблица с данными по паропроницаемости всех возможных материалов, используемых в строительстве. Само слово «паропроницаемость» означает способность слоев строительного материала либо пропускать, либо задерживать водяные пары из-за разных значений давления на обе стороны материала при одинаковом показателе атмосферного давления. Эта способность так же называется коэффициентом сопротивляемости и определяется специальными величинами.

Чем выше показатель паропроницаемости, тем больше стена может вместить в себя влаги, а это значит, что у материала низкая морозостойкость.

Таблица паропроницаемости указывается на следующие показатели:

  1. Тепловая проводимость - это, своего рода, показатель энергетического переноса тепла от более нагретых частиц к менее нагретым частицам. Следовательно, устанавливается равновесие в температурных режимах. Если в квартире установлена высокая теплопроводность, то это является максимально комфортными условиями.
  2. Тепловая емкость. С помощью нее можно рассчитать количество подаваемого тепла и содержащегося тепла в помещении. Обязательно необходимо подводить его к вещественному объему. Благодаря этому можно зафиксировать температурное изменение.
  3. Тепловое усвоение - это ограждающее конструкционное выравнивание при температурных колебаниях. Иными словами, тепловое усвоение - это степень поглощения поверхностями стен влаги.
  4. Тепловая устойчивость - это способность оградить конструкции от резких колебаний тепловых потоков.

Полностью весь комфорт в помещении будет зависеть от этих тепловых условий, именно поэтому при строительстве так необходима таблица паропроницаемости , так как она помогает эффективно сравнить разнообразные типы паропроницаемости.

С одной стороны, паропроницаемость хорошо влияет на микроклимат, а с другой - разрушает материалы, из которых построен дома. В таких случаях рекомендуется устанавливать слой пароизоляции с внешней стороны дома. После этого утеплитель не будет пропускать пар.

Пароизоляция - это материалы, которые применяют от негативного воздействия воздушных паров с целью защиты утеплителя.

Существует три класса пароизоляции. Они различаются по механической прочности и сопротивлению паропроницаемости. Первый класс пароизоляции - это жесткие материалы, в основе которых фольга. Ко второму классу относятся материалы на основе полипропилена или полиэтилена. И третий класс составляют мягкие материалы.

Таблица паропроницаемости материалов.

Таблица паропроницаемости материалов - это строительные нормативы международных и отечественных стандартов паропроницаемости строительных материалов.

Таблица паропроницаемости материалов.

Материал

Коэффициент паропроницаемости, мг/(м*ч*Па)

Алюминий

Арболит, 300 кг/м3

Арболит, 600 кг/м3

Арболит, 800 кг/м3

Асфальтобетон

Вспененный синтетический каучук

Гипсокартон

Гранит, гнейс, базальт

ДСП и ДВП, 1000-800 кг/м3

ДСП и ДВП, 200 кг/м3

ДСП и ДВП, 400 кг/м3

ДСП и ДВП, 600 кг/м3

Дуб вдоль волокон

Дуб поперек волокон

Железобетон

Известняк, 1400 кг/м3

Известняк, 1600 кг/м3

Известняк, 1800 кг/м3

Известняк, 2000 кг/м3

Керамзит (насыпной, т.е. гравий), 200 кг/м3

0,26; 0,27 (СП)

Керамзит (насыпной, т.е. гравий), 250 кг/м3

Керамзит (насыпной, т.е. гравий), 300 кг/м3

Керамзит (насыпной, т.е. гравий), 350 кг/м3

Керамзит (насыпной, т.е. гравий), 400 кг/м3

Керамзит (насыпной, т.е. гравий), 450 кг/м3

Керамзит (насыпной, т.е. гравий), 500 кг/м3

Керамзит (насыпной, т.е. гравий), 600 кг/м3

Керамзит (насыпной, т.е. гравий), 800 кг/м3

Керамзитобетон, плотность 1000 кг/м3

Керамзитобетон, плотность 1800 кг/м3

Керамзитобетон, плотность 500 кг/м3

Керамзитобетон, плотность 800 кг/м3

Керамогранит

Кирпич глиняный, кладка

Кирпич керамический пустотелый (1000 кг/м3 брутто)

Кирпич керамический пустотелый (1400 кг/м3 брутто)

Кирпич, силикатный, кладка

Крупноформатный керамический блок (тёплая керамика)

Линолеум (ПВХ, т.е. ненатуральный)

Минвата, каменная, 140-175 кг/м3

Минвата, каменная, 180 кг/м3

Минвата, каменная, 25-50 кг/м3

Минвата, каменная, 40-60 кг/м3

Минвата, стеклянная, 17-15 кг/м3

Минвата, стеклянная, 20 кг/м3

Минвата, стеклянная, 35-30 кг/м3

Минвата, стеклянная, 60-45 кг/м3

Минвата, стеклянная, 85-75 кг/м3

ОСП (OSB-3, OSB-4)

Пенобетон и газобетон, плотность 1000 кг/м3

Пенобетон и газобетон, плотность 400 кг/м3

Пенобетон и газобетон, плотность 600 кг/м3

Пенобетон и газобетон, плотность 800 кг/м3

Пенополистирол (пенопласт), плита, плотность от 10 до 38 кг/м3

Пенополистирол экструдированный (ЭППС, XPS)

0,005 (СП); 0,013; 0,004

Пенополистирол, плита

Пенополиуретан, плотность 32 кг/м3

Пенополиуретан, плотность 40 кг/м3

Пенополиуретан, плотность 60 кг/м3

Пенополиуретан, плотность 80 кг/м3

Пеностекло блочное

0 (редко 0,02)

Пеностекло насыпное, плотность 200 кг/м3

Пеностекло насыпное, плотность 400 кг/м3

Плитка (кафель) керамическая глазурованная

Плитка клинкерная

низкая; 0,018

Плиты из гипса (гипсоплиты), 1100 кг/м3

Плиты из гипса (гипсоплиты), 1350 кг/м3

Плиты фибролитовые и арболит, 400 кг/м3

Плиты фибролитовые и арболит, 500-450 кг/м3

Полимочевина

Полиуретановая мастика

Полиэтилен

Раствор известково-песчаный с известью (или штукатурка)

Раствор цементно-песчано-известковый (или штукатурка)

Раствор цементно-песчаный (или штукатурка)

Рубероид, пергамин

Сосна, ель вдоль волокон

Сосна, ель поперек волокон

Фанера клееная

Эковата целлюлозная

Таблица паропроницаемости строительных материалов

Информацию по паропроницаемости я собрал, скомпоновав несколько источников. По сайтам гуляет одна и та же табличка с одними и теми же материалами, но я её расширил, добавил современные значения паропроницаемости с сайтов производителей строительных материалов. Также я сверил значения с данными из документа «Свод правил СП 50.13330.2012» (приложение Т), добавил те, которых не было. Так что на данный момент это наиболее полная таблица.

Материал Коэффициент паропроницаемости,
мг/(м*ч*Па)
Железобетон 0,03
Бетон 0,03
Раствор цементно-песчаный (или штукатурка) 0,09
Раствор цементно-песчано-известковый (или штукатурка) 0,098
Раствор известково-песчаный с известью (или штукатурка) 0,12
Керамзитобетон, плотность 1800 кг/м3 0,09
Керамзитобетон, плотность 1000 кг/м3 0,14
Керамзитобетон, плотность 800 кг/м3 0,19
Керамзитобетон, плотность 500 кг/м3 0,30
Кирпич глиняный, кладка 0,11
Кирпич, силикатный, кладка 0,11
Кирпич керамический пустотелый (1400 кг/м3 брутто) 0,14
Кирпич керамический пустотелый (1000 кг/м3 брутто) 0,17
Крупноформатный керамический блок (тёплая керамика) 0,14
Пенобетон и газобетон, плотность 1000 кг/м3 0,11
Пенобетон и газобетон, плотность 800 кг/м3 0,14
Пенобетон и газобетон, плотность 600 кг/м3 0,17
Пенобетон и газобетон, плотность 400 кг/м3 0,23
Плиты фибролитовые и арболит, 500-450 кг/м3 0,11 (СП)
Плиты фибролитовые и арболит, 400 кг/м3 0,26 (СП)
Арболит, 800 кг/м3 0,11
Арболит, 600 кг/м3 0,18
Арболит, 300 кг/м3 0,30
Гранит, гнейс, базальт 0,008
Мрамор 0,008
Известняк, 2000 кг/м3 0,06
Известняк, 1800 кг/м3 0,075
Известняк, 1600 кг/м3 0,09
Известняк, 1400 кг/м3 0,11
Сосна, ель поперек волокон 0,06
Сосна, ель вдоль волокон 0,32
Дуб поперек волокон 0,05
Дуб вдоль волокон 0,30
Фанера клееная 0,02
ДСП и ДВП, 1000-800 кг/м3 0,12
ДСП и ДВП, 600 кг/м3 0,13
ДСП и ДВП, 400 кг/м3 0,19
ДСП и ДВП, 200 кг/м3 0,24
Пакля 0,49
Гипсокартон 0,075
Плиты из гипса (гипсоплиты), 1350 кг/м3 0,098
Плиты из гипса (гипсоплиты), 1100 кг/м3 0,11
Минвата, каменная, 180 кг/м3 0,3
Минвата, каменная, 140-175 кг/м3 0,32
Минвата, каменная, 40-60 кг/м3 0,35
Минвата, каменная, 25-50 кг/м3 0,37
Минвата, стеклянная, 85-75 кг/м3 0,5
Минвата, стеклянная, 60-45 кг/м3 0,51
Минвата, стеклянная, 35-30 кг/м3 0,52
Минвата, стеклянная, 20 кг/м3 0,53
Минвата, стеклянная, 17-15 кг/м3 0,54
Пенополистирол экструдированный (ЭППС, XPS) 0,005 (СП); 0,013; 0,004 (???)
Пенополистирол (пенопласт), плита, плотность от 10 до 38 кг/м3 0,05 (СП)
Пенополистирол, плита 0,023 (???)
Эковата целлюлозная 0,30; 0,67
Пенополиуретан, плотность 80 кг/м3 0,05
Пенополиуретан, плотность 60 кг/м3 0,05
Пенополиуретан, плотность 40 кг/м3 0,05
Пенополиуретан, плотность 32 кг/м3 0,05
Керамзит (насыпной, т.е. гравий), 800 кг/м3 0,21
Керамзит (насыпной, т.е. гравий), 600 кг/м3 0,23
Керамзит (насыпной, т.е. гравий), 500 кг/м3 0,23
Керамзит (насыпной, т.е. гравий), 450 кг/м3 0,235
Керамзит (насыпной, т.е. гравий), 400 кг/м3 0,24
Керамзит (насыпной, т.е. гравий), 350 кг/м3 0,245
Керамзит (насыпной, т.е. гравий), 300 кг/м3 0,25
Керамзит (насыпной, т.е. гравий), 250 кг/м3 0,26
Керамзит (насыпной, т.е. гравий), 200 кг/м3 0,26; 0,27 (СП)
Песок 0,17
Битум 0,008
Полиуретановая мастика 0,00023
Полимочевина 0,00023
Вспененный синтетический каучук 0,003
Рубероид, пергамин 0 - 0,001
Полиэтилен 0,00002
Асфальтобетон 0,008
Линолеум (ПВХ, т.е. ненатуральный) 0,002
Сталь 0
Алюминий 0
Медь 0
Стекло 0
Пеностекло блочное 0 (редко 0,02)
Пеностекло насыпное, плотность 400 кг/м3 0,02
Пеностекло насыпное, плотность 200 кг/м3 0,03
Плитка (кафель) керамическая глазурованная ≈ 0 (???)
Плитка клинкерная низкая (???); 0,018 (???)
Керамогранит низкая (???)
ОСП (OSB-3, OSB-4) 0,0033-0,0040 (???)

Узнать и указать в этой таблице паропроницаемость всех видов материалов трудно, производителями создано огромное количество разнообразных штукатурок, отделочных материалов. И, к сожалению, многие производители не указывают на своей продукции такую важную характеристику как паропроницаемость.

Например, определяя значение для теплой керамики (позиция «Крупноформатный керамический блок»), я изучил практически все сайты производителей этого вида кирпича, и только лишь у некоторых из них в характеристиках камня была указана паропроницаемость.

Также у разных производителей разные значения паропроницаемости. Например, у большинства пеностекольных блоков она нулевая, но у некоторых производителей стоит значение «0 - 0,02».

Показаны 25 последних комментариев. Показать все комментарии (63).
























Рисунок 1 - паропроницаемость оцинкованного нащельника

Согласно СП 50.13330.2012 "Тепловая защита зданий", приложение Т, таблица Т1 "Расчетные теплотехнические показатели строительных материалов и изделий" коэффициент паропроницаемость оцинкованного нащельника (мю, (мг/(м*ч*Па)) будет равна:

Вывод: внутренний оцинкованный нащельник (смотрим рисунок 1) в светопрозрачных конструкциях может устанавливаться без пароизоляции.

Для устройства пароизоляционного контура рекомендуется:

Пароизоляция мест крепления оцинкованного листа, это можно обеспечить мастикой

Пароизоляция мест стыковки оцинкованного листа

Пароизоляция мест стыковки элементов (оцинкованный лист и витражный ригель или стойка)

Обеспечить отсутствие паропропускания через крепежные элементы (полые заклепки)

Термины и определения

Паропроницаемость - способность материалов пропускать водяной пар через свою толщину.

Водяной пар - газообразное состояние воды.

Точка росы характеризует количество влажности в воздухе (содержания водяного пара в воздухе). Температура точки росы определяется как температура окружающей среды, до которой воздух должен охладится, чтобы содержащийся в нем пар достиг состояния насыщения и начал конденсироваться в росу. Таблица 1.


Таблица 1 - Точка росы

Паропроницаемость - измеряется количеством водяного пара, проходящим через 1м2 площади, толщиной 1метр, в течении 1 часа, при разности давлений 1 Па. (согласно СНиПа 23-02-2003). Чем ниже паропроницаемость, тем лучше теплоизоляционный материал.

Коэффициент паропроницаемость (DIN 52615) (мю, (мг/(м*ч*Па)) это отношение паропроницаемости слоя воздуха толщиной 1 метр к паропроницаемости материала той же толщины

Паропроницаемость воздуха можно рассмотреть как константу, равную

0,625 (мг/(м*ч*Па)

Сопротивляемость слоя материала зависит от его толщины. Сопротивляемость слоя материала определяется путем деления толщины на коэффициент паропроницаемости. Измеряется в (м2*ч*Па) /мг

Согласно СП 50.13330.2012 "Тепловая защита зданий", приложение Т, таблица Т1 "Расчетные теплотехнические показатели строительных материалов и изделий" коэффициент паропроницаемость (мю, (мг/(м*ч*Па)) будет равна:

Сталь стержневая, арматурная (7850кг/м3), коэфф. паропроницаемости мю = 0;

Алюминий (2600) = 0; Медь (8500) = 0; Стекло оконное (2500) = 0; Чугун (7200) = 0;

Железобетон (2500) = 0,03; Раствор цементно-песчаный (1800) = 0,09;

Кирпичная кладка из пустотелого кирпича (керамический пустотный с плотностью 1400кг/м3 на цементном песчаном растворе) (1600) = 0,14;

Кирпичная кладка из пустотелого кирпича (керамический пустотный с плотностью 1300кг/м3 на цементном песчаном растворе) (1400) = 0,16;

Кирпичная кладка из сплошного кирпича (шлакового на цементном песчаном растворе) (1500) = 0,11;

Кирпичная кладка из сплошного кирпича (глиняного обыкновенного на цементном песчаном растворе) (1800) = 0,11;

Плиты из пенополистирола плотностью до 10 - 38 кг/м3 = 0,05;

Рубероид, пергамент, толь (600) = 0,001;

Сосна и ель поперек волокон (500) = 0,06

Сосна и ель вдоль волокон (500) = 0,32

Дуб поперек волокон (700) = 0,05

Дуб вдоль волокон (700) = 0,3

Фанера клееная (600) = 0,02

Песок для строительных работ (ГОСТ 8736) (1600) = 0,17

Минвата, каменная (25-50 кг/м3) = 0,37; Минвата, каменная (40-60 кг/м3) = 0,35

Минвата, каменная (140-175 кг/м3) = 0,32; Минвата, каменная (180 кг/м3) = 0,3

Гипсокартон 0,075; Бетон 0,03

Статья дана в ознакомительных целях

Понятие «дышащих стен» считается положительной характеристикой материалов, из которых они выполнены. Но мало кто задумывается о причинах, допускающих это дыхание. Материалы, способные пропускать как воздух, так и пар, являются паропроницающими.

Наглядный пример строительных материалов, обладающих высокой проницаемостью пара:

  • древесина;
  • керамзитовые плиты;
  • пенобетон.

Бетонные или кирпичные стены менее проницаемы для пара, чем деревянные или керамзитовые.

Источники пара внутри помещения

Дыхание человека, приготовление пищи, водяной пар из ванной комнаты и многие другие источники пара при отсутствии вытяжного устройства создают высокий уровень влажности внутри помещения. Часто можно наблюдать образование испарины на оконных стеклах в зимнее время, или на холодных водопроводных трубах. Это примеры образования водяного пара внутри дома.

Что такое паропроницаемость

Правила проектирования и строительства дают следующее определение термина: паропроницаемость материалов - это способность пропускать насквозь капельки влаги, содержащиеся в воздухе, вследствие различных величин парциальных давлений пара с противоположных сторон при одинаковых значениях давления воздуха. Еще ее определяют, как плотность парового потока, проходящего сквозь определенную толщину материала.

Таблица, имеющая коэффициент паропроницаемости, составленная для строительных материалов, носит условный характер, т. к. заданные расчетные величины влажности и атмосферных условий не всегда соответствуют реальным условиям. Точка росы может быть рассчитана, на основании приблизительных данных.

Конструкция стен с учетом паропроницаемости

Даже если стены возведены из материала, имеющего высокую паропроницаемость, это не может являться гарантией, что он не превратится в воду в толще стены. Чтобы этого не произошло, нужно защитить материал от разности парциального давления паров изнутри и снаружи. Защита от образования парового конденсата производится при помощи плит ОСБ, утепляющих материалов типа пеноплекса и паронепроницаемых пленок или мембран, недопускающих проникновения пара в утеплитель.

Стены утепляют с тем расчетом, чтобы ближе к наружному краю располагался слой утеплителя, неспособный образовать конденсацию влаги, отодвигающий точку росы (образование воды). Параллельно с защитными слоями в кровельном пироге необходимо обеспечить правильный вентиляционный зазор.

Разрушительные действия пара

Если стеновой пирог имеет слабую способность поглощения пара, ему не грозит разрушение вследствие расширения влаги от мороза. Главное условие - не допустить накапливания влаги в толще стены, а обеспечить свободное ее прохождение и выветривание. Не менее важно устроить принудительную вытяжку лишней влаги и пара из помещения, подключить мощную вентиляционную систему. Соблюдая перечисленные условия, можно уберечь стены от растрескивания, и увеличить срок службы всего дома. Постоянное прохождение влаги сквозь строительные материалы ускоряет их разрушение.

Использование проводящих качеств

Учитывая особенности эксплуатации зданий, применяется следующий принцип утепления: снаружи располагаются наиболее паропроводящие утепляющие материалы. Благодаря такому расположению слоев уменьшается вероятность накапливания воды при снижении температуры на улице. Чтобы стены не намокали изнутри, внутренний слой утепляют материалом, имеющим низкую паропроницаемость, например, толстый слой экструдированного пенополистирола.

С успехом применяется противоположный метод использования паропроводящих эффектов строительных материалов. Он состоит в том, что кирпичную стену покрывают пароизолирующим слоем пеностекла, который прерывает движущийся поток пара из дома на улицу в период низких температур. Кирпич начинает аккумулировать влажность комнат, создавая приятный климат внутри помещения благодаря надежному паровому барьеру.

Соблюдение основного принципа при возведении стен

Стены должны отличаться минимальной способностью проводить пар и тепло, но одновременно быть теплоемкими и теплоустойчивыми. При использовании материала одного вида требуемых эффектов достичь невозможно. Внешняя стеновая часть обязана задерживать холодные массы и не допускать их воздействия на внутренние теплоемкие материалы, которые сохраняют комфортный тепловой режим внутри помещения.

Для внутреннего слоя идеально подходит армированный бетон, его теплоемкость, плотность и прочность имеют максимальные показатели. Бетон успешно сглаживает разность ночных и дневных температурных перепадов.

При проведении строительных работ составляют стеновые пироги с учетом основного принципа: паропроницаемость каждого слоя должна повышаться в направлении от внутренних слоев к наружным.

Правила расположения пароизолирующих слоев

Чтобы обеспечить лучшие эксплуатационные характеристики многослойных конструкций сооружений, применяется правило: со стороны, имеющей более высокую температуру, располагают материалы с увеличенной устойчивостью к проникновению пара с повышенной теплопроводностью. Слои, расположенные снаружи, должны иметь высокую паропроводимость. Для нормального функционирования ограждающей конструкции необходимо, чтобы коэффициент наружного слоя в пять раз превышал показатель слоя, расположенного внутри.

При выполнении этого правила водяным парам, попавшим в теплый слой стены, не составит труда с ускорением выйти наружу через более пористые материалы.

При несоблюдении этого условия внутренние слои строительных материалов замокают и становятся более теплопроводными.

Знакомство с таблицей паропроницаемости материалов

При проектировании дома, учитываются характеристики строительного сырья. В Своде правил содержится таблица с информацией о том, какой коэффициент паропроницаемости имеют строительные материалы при условиях нормального атмосферного давления и среднего значения температуры воздуха.

Материал

Коэффициент паропроницаемости
мг/(м·ч·Па)

экструдированный пенополистирол

пенополиуретан

минеральная вата

железобетон, бетон

сосна или ель

керамзит

пенобетон, газобетон

гранит, мрамор

гипсокартон

дсп, осп, двп

пеностекло

рубероид

полиэтилен

линолеум

Таблица опровергает ошибочные представления о дышащих стенах. Количество пара, выходящего через стены, ничтожно мало. Основной пар выносится с потоками воздуха при проветривании или с помощью вентиляции.

Важное значение таблицы паропроницаемости материалов

Коэффициент паропроницаемости является важным параметром, который используется для расчета толщины слоя утеплительных материалов. От правильности полученных результатов зависит качество утепления всей конструкции.

Сергей Новожилов - эксперт по кровельным материалам с 9-летним опытом практической работы в области инженерных решений в строительстве.

Чтобы создать благоприятный микроклимат в помещении, необходимо учитывать свойства строительных материалов. Сегодня мы разберем одно свойство – паропроницаемость материалов .

Паропроницаемостью называется способность материала пропускать пары, содержащиеся в воздухе. Пары воды проникают в материал за счет давления.

Помогут разобраться в вопросе таблицы, которые охватывают практически все материалы, использующиеся для строительства. Изучив данный материал, вы будете знать, как построить теплое и надежное жилище.

Оборудование

Если речь идет о проф. строительстве, то в нем используется специально оборудование для определения паропроницаемости. Таким образом и появилась таблица, которая находится в этой статье.

Сегодня используется следующее оборудование:

  • Весы с минимальной погрешностью – модель аналитического типа.
  • Сосуды или чаши для проведения опытов.
  • Инструменты с высоким уровнем точности для определения толщины слоев строительных материалов.

Разбираемся со свойством

Бытует мнение, что «дышащие стены» полезны для дома и его обитателей. Но все строители задумывают об этом понятии. «Дышащим» называется тот материал, который помимо воздуха пропускает и пар – это и есть водопроницаемость строительных материалов. Высоким показателем паропроницаемости обладают пенобетон, керамзит дерево. Стены из кирпича или бетона тоже обладают этим свойством, но показатель гораздо меньше, чем у керамзита или древесных материалов.

Во время принятия горячего душа или готовки выделяется пар. Из-за этого в доме создается повышенная влажность – исправить положение может вытяжка. Узнать, что пары никуда не уходят можно по конденсату на трубах, а иногда и на окнах. Некоторые строители считают, что если дом построен из кирпича или бетона, то в доме «тяжело» дышится.

На деле же ситуация обстоит лучше – в современном жилище около 95% пара уходит через форточку и вытяжку. И если стены сделаны из «дышащих» строительных материалов, то 5% пара уходят через них. Так что жители домов из бетона или кирпича не особо страдают от этого параметра. Также стены, независимо от материала, не будут пропускать влагу из-за виниловых обоев. Есть у «дышащих» стен и существенный недостаток – в ветреную погоду из жилища уходит тепло.

Таблица поможет вам сравнить материалы и узнать их показатель паропроницаемости:

Чем выше показатель паронипроницаемости, тем больше стена может вместить в себя влаги, а это значит, что у материала низкая морозостойкость. Если вы собираетесь построить стены из пенобетона или газоблока, то вам стоит знать, что производители часто хитрят в описании, где указана паропроницаемость. Свойство указано для сухого материала – в таком состоянии он действительно имеет высокую теплопроводность, но если газоблок намокнет, то показатель увеличится в 5 раз. Но нас интересует другой параметр: жидкость имеет свойство расширяться при замерзании, как результат – стены разрушаются.

Паропроницаемость в многослойной конструкции

Последовательность слоев и тип утеплителя – вот что в первую очередь влияет на паропроницаемость. На схеме ниже вы можете увидеть, что если материал-утеплитель расположен с фасадной стороны, то показатель давление на насыщенность влаги ниже.

Если утеплитель будет находиться с внутренней стороны дома, то между несущей конструкцией и этим строительным будет появляться конденсат. Он отрицательно влияет на весь микроклимат в доме, при этом разрушение строительных материалов происходит заметно быстрее.

Разбираемся с коэффициентом


Коэффициент в этом показатели определяет количество паров, измеряемых в граммах, которые проходят через материалы толщиной 1 метр и слоем в 1м² в течение одного часа. Способность пропускать или задерживать влагу характеризирует сопротивление паропроницаемости, которое в таблице обозначается симвломом «µ».

Простыми словами, коэффициент – это сопротивление строительных материалов, сравнимое с папопроницаемостью воздуха. Разберем простой пример, минеральная вата имеет следующий коэффициент паропроницаемости : µ=1. Это означает, что материал пропускает влагу не хуже воздуха. А если взять газобетон, то у него µ будет равняться 10, то есть его паропроводимость в десять раз хуже, чем у воздуха.

Особенности

С одной стороны паропроницаемость хорошо влияет на микроклимат, а с другой – разрушает материалы, из которых построен дома. К примеру, «вата» отлично пропускает влагу, но в итоге из-за избытка пара на окнах и трубах с холодной водой может образоваться конденсат, о чем говорит и таблица. Из-за этого теряет свои качества утеплитель. Профессионалы рекомендуют устанавливать слой пароизоляции с внешней стороны дома. После этого утеплитель не будет пропускать пар.

Если материал имеет низкий показатель паропроницаемости, то это только плюс, ведь хозяевам не приходится тратиться на изоляционные слои. А избавиться от пара, образовывающегося от готовки и горячей воды, помогут вытяжка и форточка – этого хватит, чтобы поддерживать нормальный микроклимат в доме. В случае, когда дом строится из дерева, не получается обойтись без дополнительной изоляции, при этом для древесных материалов необходим специальный лак.

Таблица, график и схема помогут вам понять принцип действия этого свойства, после чего вы уже сможете определиться с выбором подходящего материала. Также не стоит забывать и про климатические условия за окном, ведь если вы живете в зоне с повышенной влажностью, то про материалы с высоким показателем паропроницаемости стоит вообще забыть.