Среда остается нейтральной при растворении в воде. Гидролиз солей

Гидролиз - это обменная реакция вещества с водой, приводящая к его разложению . Попробуем разобраться в причине данного явления.

Электролиты делятся на сильные электролиты и слабые. См. Табл. 1.

Вода относится к слабым электролитам и поэтому диссоциирует на ионы лишь в незначительной степени Н2О ↔ Н++ ОН-

Ионы веществ, попадающие в раствор, гидратируются молекулами воды. Но при этом может происходить и другой процесс. Например, анионы соли, которые образуются при её диссоциации, могут взаимодействовать с катионами водорода, которые, пусть и в незначительной степени, но все-таки образуются при диссоциации воды. При этом может происходить смещение равновесия диссоциации воды. Обозначим анион кислоты Х-.

Предположим, что кислота сильная. Тогда она по определению практически полностью распадается на ионы. Если кислота слабая , то она диссоциирует неполностью. Она будет образовываться при прибавлении в воду из анионов соли и ионов водорода, получающихся при диссоциации воды. За счет её образования, в растворе будут связываться ионы водорода, и их концентрация будет уменьшаться. Н++ Х-↔ НХ

Но, по правилу Ле Шателье, при уменьшении концентрации ионов водорода равновесие смещается в первой реакции в сторону их образования, т. е. вправо. Ионы водорода будут связываться с ионами водорода воды, а гидроксид ионы - нет, и их станет больше, чем было в воде до прибавления соли. Значит, среда раствора будет щелочная . Индикатор фенолфталеин станет малиновым. См. рис. 1.

Аналогично можно рассмотреть взаимодействие катионов с водой. Не повторяя всю цепочку рассуждений, подытоживаем, что если основание слабое , то в растворе будут накапливаться ионы водорода, и среда будет кислая .

Катионы и анионы солей можно разделить на два типа. Рис. 2.

Рис. 2. Классификация катионов и анионов по силе электролитов

Поскольку и катионы и анионы, согласно данной классификации, бывают двух типов, то всего существует 4 разнообразных комбинации при образовании их солей. Рассмотрим, как относится к гидролизу каждый из классов этих солей. Табл. 2.

Какими по силе кислотой и основанием образована соль

Примеры солей

Отношение к гидролизу

Среда

Окраска лакмуса

Соль сильного основания и сильной кислоты

NaCl, Ba(NO3)2, K2SO4

Гидролизу не подвергаются.

нейтральная

фиолетовый

Соль слабого основания и сильной кислоты

ZnSO4, AlCl3, Fe(NO3)3

Гидролиз по катиону.

Zn2+ + HOH ZnOH+ + H+

Соль сильного основания и слабой кислоты

Na2CO3,К2SiO3, Li2SO3

Гидролиз по аниону

CO32 + HOH HCO3 + OH

щелочная

Соль слабого основания и слабой кислоты

FeS, Al(NO2)3, CuS

Гидролиз и по аниону, и по катиону.

среда раствора зависит от того, какое из образующихся соединений будет более слабым электролитом.

зависит от более сильного электролита.

Усилить гидролиз можно разбавлением раствора или нагреванием системы.

Соли, которые подвергаются необратимому гидролизу

Реакции ионного обмена протекают до конца при выпадении осадка, выделения газа или малодиссоируемого вещества.

2 Al (NO3)3+ 3 Na2S +6 Н 2 О → 2 Al (OH)3 ↓+ 3 H2S+6 NaNO3 (1)

Если взять соль слабого основания и слабой кислоты и при этом и катион, и анион будут многозарядным, то при гидролизе таких солей будет образовываться и нерастворимый гидроксид соответствующего металла, и газообразный продукт. В данном случае гидролиз может стать необратимым. Например, в реакции (1) не образуется осадок сульфида алюминия.

Под это правило подпадают следующие соли: Al2S3, Cr2S3, Al2(CO3)3, Cr2(CO3)3, Fe2(CO3)3, CuCO3. Эти соли в водной среде подвергаются необратимому гидролизу. Их невозможно получить в водном растворе.

В органической химии гидролиз имеет очень большое значение.

При гидролизе изменяется концентрация ионов водорода в растворе, а во многих реакциях используются кислоты или основания. Поэтому, если мы будем знать концентрацию ионов водорода в растворе, то будет легче следить за процессом и управлять им. Для количественной характеристики содержания ионов в растворе используется pН раствора. Он равен отрицательному логарифму концентрации ионов водорода.

p Н = - lg [ H + ]

Концентрация ионов водорода в воде равна 10-7 степени, соответственно, рН = 7 у абсолютно чистой воды при комнатной температуре.

Если долить в раствор кислоты или добавить соль слабого основания и сильной кислоты, то концентрация ионов водорода станет больше 10-7и рН < 7.

Если добавить щелочи или соли сильного основания и слабой кислоты, то концентрация ионов водорода станет меньше, чем 10-7и рН>7. См. рис. 3. Знать количественный показатель кислотности необходимо во многих случаях. Например, водородный показатель желудочного сока равен 1,7. Увеличение или уменьшение этого значения приводит к нарушению пищеварительных функций человека. В сельском хозяйстве ведется контроль кислотности почвы. Например, для садоводства наилучшей является почва с рН = 5-6. При отклонении от этих значений в почву вносят подкисляющие или подщелачивающие добавки.

ИСТОЧНИКИ

источник видео - http://www.youtube.com/watch?v=CZBpa_ENioM

источнки презентации - http://ppt4web.ru/khimija/gidroliz-solejj-urok-khimii-klass.html

Для того, чтобы понять, что такое гидролиз солей, вспомним для начала, как диссоциируют кислоты и щелочи.

Общим между всеми кислотами является то, что при их диссоциации обязательно образуются катионы водорода (Н +), при диссоциации же всех щелочей всегда образуются гидроксид-ионы (ОН −).

В связи с этим, если в растворе, по тем или иным причинам, больше ионов Н + говорят, что раствор имеет кислую реакцию среды, если ОН − — щелочную реакцию среды.

Если с кислотами и щелочами все понятно, то какая же реакция среды будет в растворах солей?

На первый взгляд, она всегда должна быть нейтральной. И правда же, откуда, например, в растворе сульфида натрия взяться избытку катионов водорода или гидроксид-ионов. Сам сульфид натрия при диссоциации не образует ионов ни одного, ни другого типа:

Na 2 S = 2Na + + S 2-

Тем не менее, если бы перед вами оказались, к примеру, водные растворы сульфида натрия, хлорида натрия, нитрата цинка и электронный pH-метр (цифровой прибор для определения кислотности среды) вы бы обнаружили необычное явление. Прибор показал бы вам, что рН раствора сульфида натрия больше 7, т.е. в нем явный избыток гидроксид-ионов. Среда раствора хлорида натрия оказалась бы нейтральной (pH = 7), а раствора Zn(NO 3) 2 кислой.

Единственное, что соответствует нашим ожиданиям – это среда раствора хлорида натрия. Она оказалась нейтральной, как и предполагалось.
Но откуда же взялся избыток гидроксид-ионов в растворе сульфида натрия, и катионов-водорода в растворе нитрата цинка?

Попробуем разобраться. Для этого нам нужно усвоить следующие теоретические моменты.

Любую соль можно представить как продукт взаимодействия кислоты и основания. Кислоты и основания делятся на сильные и слабые. Напомним, что сильными называют те кислоты, и основания, степень диссоциации, которых близка к 100%.

примечание: сернистую (H 2 SO 3) и фосфорную (H 3 PO 4) чаще относят к кислотам средней силы, но при рассмотрении заданий по гидролизу нужно относить их к слабым.

Кислотные остатки слабых кислот, способны обратимо взаимодействовать с молекулами воды, отрывая от них катионы водорода H + . Например, сульфид-ион, являясь кислотным остатком слабой сероводородной кислоты, взаимодействует с ней следующим образом:

S 2- + H 2 O ↔ HS − + OH −

HS − + H 2 O ↔ H 2 S + OH −

Как можно видеть, в результате такого взаимодействия образуется избыток гидроксид-ионов, отвечающий за щелочную реакцию среды. То есть кислотные остатки слабых кислот увеличивают щелочность среды. В случае растворов солей содержащих такие кислотные остатки говорят, что для них наблюдается гидролиз по аниону .

Кислотные остатки сильных кислот, в отличие от слабых, с водой не взаимодействуют. То есть они не оказывают влияния на pH водного раствора. Например, хлорид-ион, являясь кислотным остатком сильной соляной кислоты, с водой не реагирует:

То есть, хлорид-ионы, не влияют на pН раствора.

Из катионов металлов, так же с водой способны взаимодействовать только те, которым соответствуют слабые основания. Например, катион Zn 2+ , которому соответствует слабое основание гидроксид цинка. В водных растворах солей цинка протекают процессы:

Zn 2+ + H 2 O ↔ Zn(OH) + + H +

Zn(OH) + + H 2 O ↔ Zn(OH) + + H +

Как можно видеть из уравнений выше, в результате взаимодействия катионов цинка с водой, в растворе накапливаются катионы водорода, повышающие кислотность среды, то есть понижающие pH. Если в состав соли, входят катионы, которым соответствуют слабые основания, в этом случае говорят что соль гидролизуется по катиону .

Катионы металлов, которым соответствуют сильные основания, с водой не взаимодействуют. Например, катиону Na + соответствует сильное основание – гидроксид натрия. Поэтому ионы натрия с водой не реагируют и никак не влияют на pH раствора.

Таким образом, исходя из вышесказанного соли можно разделить на 4 типа, а именно, образованные:

1) сильным основанием и сильной кислотой,

Такие соли не содержат ни кислотных остатков, ни катионов металлов, взаимодействующих с водой, т.е. способных повлиять на pH водного раствора. Растворы таких солей имеют нейтральную реакцию среды. Про такие соли говорят, что они не подвергаются гидролизу .

Примеры: Ba(NO 3) 2 , KCl, Li 2 SO 4 и т.д.

2) сильным основанием и слабой кислотой

В растворах таких солей, с водой реагируют только кислотные остатки. Среда водных растворов таких солей щелочная, в отношении солей такого типа говорят, что они гидролизуются по аниону

Примеры: NaF, K 2 CO 3 , Li 2 S и т.д.

3) слабым основанием и сильной кислотой

У таких солей с водой реагируют катионы, а кислотные остатки не реагируют – гидролиз соли по катиону , среда кислая.

Примеры: Zn(NO 3) 2 , Fe 2 (SO 4) 3 , CuSO 4 и т.д.

4) слабым основанием и слабой кислотой.

С водой реагируют как катионы, так и анионы кислотных остатков. Гидролиз солей такого рода идет и по катиону, и по аниону или же. Также говорят про такие соли, что они подвергаются необратимому гидролизу .

Что же значит то, что они необратимо гидролизуются?

Поскольку в данном случае с водой реагируют и катионы металла (или NH 4 +) и анионы кислотного остатка, в раcтворе одновременно возникают и ионы H + , и ионы OH − , которые образуют крайне малодиссоциирующее вещество – воду (H 2 O).

Это, в свою очередь, приводит к тому, что соли образованные кислотными остатками слабых оснований и слабых кислот не могут быть получены обменными реакциями, а только твердофазным синтезом, либо и вовсе не могут быть получены. Например, при смешении раствора нитрата алюминия с раствором сульфида натрия, вместо ожидаемой реакции:

2Al(NO 3) 3 + 3Na 2 S = Al 2 S 3 + 6NaNO 3 (− так реакция не протекает!)

Наблюдается следующая реакция:

2Al(NO 3) 3 + 3Na 2 S + 6H 2 O= 2Al(OH) 3 ↓+ 3H 2 S + 6NaNO 3

Тем не менее, сульфид алюминия без проблем может быть получен сплавлением порошка алюминия с серой:

2Al + 3S = Al 2 S 3

При внесении сульфида алюминия в воду, он также как и при попытке его получения в водном растворе, подвергается необратимому гидролизу.

Al 2 S 3 + 6H 2 O = 2Al(OH) 3 ↓ + 3H 2 S

Лекция: Гидролиз солей. Среда водных растворов: кислая, нейтральная, щелочная

Гидролиз солей

Мы продолжаем изучать закономерности протекания химических реакций. При изучении темы вы узнали, что при электролитической диссоциации в водном растворе частицы, участвующих в реакции веществ растворяются в воде. Это гидролиз. Ему подвергаются различные неорганические и органические вещества, в частности, соли. Без понимания процесса гидролиза солей, вы не сможете объяснить явления, происходящие в живых организмах.

Сущность гидролиза солей сводится к обменному процессу взаимодействия ионов (катионов и анионов) соли с молекулами воды. В результате образуется слабый электролит – малодиссоциирующее соединение. В водном растворе появляется избыток свободных ионов Н + или ОН - . Вспомните, диссоциация каких электролитов образует ионы Н + , а каких ОН - . Как вы догадались, в первом случае мы имеем дело с кислотой, значит водная среда с ионами Н + будет кислой. Во втором же случае, щелочной. В самой воде среда нейтральная, поскольку она незначительно диссоциируется на одинаковые по концентрации ионы Н + и ОН - .

Характер среды можно определить с помощью индикаторов. Фенолфталеин обнаруживает щелочную среду и окрашивает раствор в малиновый цвет. Лакмус под действием кислоты становится красным, а под действием щелочи остается синим. Метилоранж - оранжевый, в щелочной среде становится желтым, в кислой среде – розовым. Тип гидролиза зависит от типа соли.


Типы солей

Итак, любую соль представляет собой можно взаимодействие кислоты и основания, которые, как вы поняли, бывают сильными и слабыми. Сильные – это те, чья степень диссоциации α близка к 100%. Следует запомнить, что сернистую (H 2 SO 3) и фосфорную (H 3 PO 4) кислоту чаще относят к кислотам средней силы. При решении задач по гидролизу, данные кислоты необходимо относить к слабым.

Кислоты:

    Сильные: HCl; HBr; Hl; HNO 3 ; HClO 4 ; H 2 SO 4 . Их кислотные остатки с водой не взаимодействуют.

    Слабые: HF; H 2 CO 3 ; H 2 SiO 3 ; H 2 S; HNO 2 ; H 2 SO 3 ; H 3 PO 4 ; органические кислоты. А их кислотные остатки взаимодействуют с водой, забирая у её молекул катионы водорода H+.

Основания:

    Сильные: растворимые гидроксиды металлов; Ca(OH) 2 ; Sr(OH) 2 . Их катионы металлов с водой не взаимодействуют.

    Слабые: нерастворимые гидроксиды металлов; гидроксид аммония (NH 4 OH). А катионы металлов здесь взаимодействуют с водой.

Исходя из данного материала, рассмотрим типы солей :

    Соли с сильным основанием и сильной кислотой. К примеру: Ba (NO 3) 2 , KCl, Li 2 SO 4 . Особенности: не взаимодействуют с водой, а значит гидролизу не подвергаются. Растворы таких солей имеют нейтральную реакцию среды.

    Соли с сильным основанием и слабой кислотой. К примеру: NaF, K 2 CO 3 , Li 2 S. Особенности: с водой взаимодействуют кислотные остатки этих солей, происходит гидролиз по аниону. Среда водных растворов - щелочная.

    Соли со слабым основанием и сильной кислотой. К примеру: Zn(NO 3) 2 , Fe 2 (SO 4) 3 , CuSO 4 . Особенности: с водой взаимодействуют только катионы металлов, происходит гидролиз по катиону. Среда - кислая.

    Соли со слабым основанием и слабой кислотой. К примеру: CH 3 COONН 4 , (NН 4) 2 CО 3 , HCOONН 4. Особенности: с водой взаимодействуют как катионы, так и анионы кислотных остатков, гидролиз происходит по катиону и аниону.

Пример гидролиза по катиону и образования кислой среды :

    Гидролиз хлорида железа FeCl 2

FeCl 2 + H 2 O ↔ Fe(OH)Cl + HCl (молекулярное уравнение)

Fe 2+ + 2Cl - + H + + OH - ↔ FeOH + + 2Cl - + Н + (полное ионное уравнение)

Fe 2+ + H 2 O ↔ FeOH + + Н + (сокращенное ионное уравнение)

Пример гидролиза по аниону и образования щелочной среды:

    Гидролиз ацетата натрия CH 3 COONa

CH 3 COONa + H 2 O ↔ CH 3 COOH + NaOH (молекулярное уравнение)

Na + + CH 3 COO - + H 2 O ↔ Na + + CH 3 COOH + OH - (полное ионное уравнение)

CH 3 COO - + H 2 O ↔ CH 3 COOH + OH - (сокращенное ионное уравнение)

Пример совместного гидролиза:

  • Гидролиз сульфида алюминия Al 2 S 3

Al 2 S 3 + 6H2O ↔ 2Al(OH) 3 ↓+ 3H 2 S

В данном случае мы видим полный гидролиз, который происходит, если соль образована слабым нерастворимым или летучим основанием и слабой нерастворимой или летучей кислотой. В таблице растворимости стоят прочерки на таких солях. Если в ходе реакции ионного обмена образуется соль, которая не существует в водном растворе, то надо написать реакцию этой соли с водой.

Например:

2FeCl 3 + 3Na 2 CO 3 ↔ Fe 2 (CO 3) 3 + 6NaCl

Fe 2 (CO 3) 3 + 6H 2 O ↔ 2Fe(OH) 3 + 3H 2 O + 3CO 2

Складываем эти два уравнения, то что повторяется в левой и правой частях, сокращаем:

2FeCl 3 + 3Na 2 CO 3 + 3H 2 O ↔ 6NaCl + 2Fe(OH) 3 ↓ + 3CO 2



Гидролизом

Типы солей

Окраска индикаторов

Алгоритм составления уравнения реакции гидролиза

ВНИМАНИЕ! Диссоциация молекул воды – не происходит. Уравнение диссоциации воды записывается только для того, чтобы правильно составить уравнение гидролиза!!!

1. Анализируют состав соли:

NaOH (сильное основание)

H 2 CO 3 (слабая кислота)

2. Выбирают ион, подвергающийся гидролизу:

Na 2 CO 3 ↔ 2Na + + CO 3 2-

HOH ↔ H + + OH -

2Na + + CO 3 2- + HOH ↔ 2Na + + HCO 3 - + OH -

3. Из полученного уравнения составляют молекулярное, используя те ионы, которые принимали участие в гидролизе:

Na 2 CO 3 + HOH ↔ NaHCO 3 + NaOH

среда раствора

соли – щелочная

4. Данный алгоритм не относится к случаю так называемого полного гидролиза.

Типы солей и характер их гидролиза

Соль образована катионом сильного основания и анионом сильной кислоты.

Соли этого типа гидролизу не подвергаются, так как при их взаимодействии с водой равновесие ионов H + и ОН - не нарушается. В растворах таких солей среда остается нейтральной (рН = 7).

NaOH (сильное основание)

HNO 3 (сильная кислота)


Соль, образованная катионом сильного основания и анионом слабой кислоты.

Гидролиз этого типа солей иначе называется гидролизом по аниону. Рассмотрим в качестве примера гидролиз K 2 SO 3

KOH (сильное основание)

H 2 SO 3 (слабая кислота)

K 2 SO 3 ↔ 2K + + SO 3 2-

HOH ↔ H + + OH -

2K + + SO 3 2- + HOH ↔ 2K + + HSO 3 - + OH -

K 2 SO 3 + HOH ↔ KHSO 3 + KOH

среда раствора

соли – щелочная

Таким образом, каждый ион Н + нейтрализует одну единицу отрицательного заряда иона кислотного остатка СО 3 2- , а из молекулы воды НОН освобождаются гидроксид-ион ОН - . Эти ионы гидроксида ОН - , будучи в избытке, придают щелочную реакцию (рН>7).

Следовательно, растворы солей, образованные сильным основанием и слабой кислотой, имеют щелочную реакцию.

Данный случай гидролиза обратим.

НЕОБРАТИМЫЙ ГИДРОЛИЗ НЕОРГАНИЧЕСКИХ И ОРГАНИЧЕСКИХ ВЕЩЕСТВ

Необратимый гидролиз двухэлементных (бинарных) соединений неметаллов

Многие бинарные соединения неметаллов «не выдерживают» испытания водой и необратимо гидролизуются с образованием, как правило, двух кислот: кислородсодержащей (менее электроотрицательный элемент в бинарном соединении) и бескислородной (более электроотрицательный элемент).

SiCI 4 + 3H 2 O = H 2 SiO 3 + 4HCI

P 2 S 5 + 8H 2 O = 2H 3 PO 4 + 5H 2 S

СОЛИ ФОСФОРНОЙ КИСЛОТЫ

Растворимые средние соли фосфорной кислоты подвергаются гидролизу по аниону кислоты и их растворы имеют сильно щелочную реакцию:

Na 3 PO 4 + HOH → Na 2 HPO 4 + NaOH

HOH + PO 4 3- → HPO 4 2- + OH -

Кислые соли фосфорной кислоты (особенно дигидрофосфаты) гидролизуются в значительно меньшей степени, кроме того, образующиеся при этом продукты гидролиза: H 2 PO 4 – , H 3 PO 4 – могут частично диссоциировать с образованием ионов Н + . Поэтому в растворах гидрофосфатов среда является слабощелочной , а в растворах дигидрофосфатов даже слабокислой , т.к. процесс диссоциации H 2 PO 4 – -ионов превалирует над процессом их гидролиза.

Тренировочные задания:


ОТВЕТЫ:

1 – 1324

2 – 2134

3 – 1441

4 – 3232

5 – 3134

6 – 3421

7 – 3322

8 – 3421

9 – 3332

10 – 4312

11 – 3332

12 – 2231

13 – 2131

14 – 4231

15 – 3322

16 – 3211

17 – 1313

18 – 3213

19 – 3142

20 – 3141

21 – 1213

22 – 4313

23 – 2121

24 – 1231

25 – 2122

26 – 2431

27 – 2421

28 – 3322

29 – 2222

30 – 2121


Гидролиз солей. Среда водных растворов: кислая, нейтральная, щелочная

Одним из важнейших свойств солей является гидролиз. Гидролизом называют взаимодействие ионов соли с водой, приводящее к образованию слабого электролита.

В зависимости от силы кислот и оснований образуемые ими соли делят на четыре типа:

1) соли, образованные катионом сильного основания и анионом сильной кислоты;

2) соли, образованные катионом сильного основания и анионом слабой кислоты;

3) соли, образованные катионом слабого основания и анионом сильной кислотой;

4) соли, образованные катионом слабого основания и анионом слабой кислотой.

Типы солей

Окраска индикаторов

Хотя гидролиз солей – разновидность реакции обмена, технология составления уравнений реакций этого процесса имеет свои особенности. Главное отличие – то, что в этом случае сначала составляют ионное уравнение реакции, а затем не его основе записывают молекулярное.

Химическим путем рН раствора можно определить при помощи кислотно-основных индикаторов.

Кислотно-основные индикаторы – органические вещества, окраска которых зависит от кислотности среды.

Наиболее распространенными индикаторами являются лакмус, метиловый оранжевый, фенолфталеин. Лакмус в кислой среде окрашивается в красный цвет, в щелочной – в синий. Фенолфталеин в кислой среде - бесцветный, в щелочной окрашивается в малиновый цвет. Метиловый оранжевый в кислой среде окрашивается в красный цвет, а в щелочной – в желтый.

В лабораторной практике часто смешивают ряд индикаторов, подобранных таким образом, чтобы цвет смеси изменялся в широких пределах значений рН. С их помощью можно определить рН раствора с точностью до единицы. Эти смеси называют универсальными индикаторами .

Имеются специальные приборы – рН–метры, с помощью которых можно определить рН растворов в диапазоне от 0 до 14 с точностью до 0,01 единицы рН.

Гидролиз солей

При растворении некоторых солей в воде нарушается равновесие процесса диссоциации воды и, соответственно, изменяется рН среды. Это объясняется тем, что соли реагируют с водой.

Гидролиз солей химическое обменное взаимодействие ионов растворенной соли с водой, приводящее к образованию слабодиссоциирующих продуктов (молекул слабых кислот или оснований, анионов кислых солей или катионов основных солей) и сопровождающееся изменением рН среды.

Рассмотрим процесс гидролиза в зависимости от природы оснований и кислот, образующих соль.

Соли, образованные сильными кислотами и сильными основаниями (NaCl, kno3, Na2so4 и др.).

Допустим , что при взаимодействии хлорида натрия с водой происходит реакция гидролиза с образованием кислоты и основания:

NaCl + H 2 O ↔ NaOH + HCl

Для правильного представления о характере этого взаимодействия запишем уравнение реакции в ионном виде, учитывая, что единственным слабодиссоциирующим соединением в этой системе является вода:

Na + + Cl - + HOH ↔ Na + + OH - + H + + Cl -

При сокращении одинаковых ионов в левой и правой частях уравнения остается уравнение диссоциации воды:

Н 2 О ↔ Н + + ОН -

Как видно, в растворе нет избыточных ионов Н + или ОН - по сравнению с их содержанием в воде. Кроме того, никаких других слабодиссоциирующих или труднорастворимых соединений не образуется. Отсюда делаем вывод, что соли, образованные сильными кислотами и основаниями гидролизу не подвергаются, а реакция растворов этих солей такая же, как и в воде, нейтральная (рН=7).

При составлении ионно–молекулярных уравнений реакций гидролиза необходимо:

1) записать уравнение диссоциации соли;

2) определить природу катиона и аниона (найти катион слабого основания или анион слабой кислоты);

3) записать ионно-молекулярное уравнение реакции, учитывая, что вода - слабый электролит- и что сумма зарядов должна быть одинаковой в обеих частях уравнения.

Соли, образованные слабой кислотой и сильным основанием

(Na 2 CO 3 , K 2 S, CH 3 COONa и др .)

Рассмотрим реакцию гидролиза ацетата натрия. Эта соль в растворе распадается на ионы: CH 3 COONa ↔ CH 3 COO - + Na + ;

Na + -катион сильного основания, CH 3 COO - - анион слабой кислоты.

Катионы Na + не могут связывать ионы воды, так как NaОН – сильное основание - полностью распадается на ионы. Анионы слабой уксусной кислоты CH 3 COO - связывают ионы водорода с образованием малодиссоциированной уксусной кислоты:

CH 3 COO - + НОН ↔ CH 3 COOН + ОН -

Видно, что в результате гидролиза CH 3 COONa в растворе образовался избыток гидроксид-ионов, и реакция среды стала щелочной (рН > 7).

Таким образом можно сделать вывод, что соли, образованные слабой кислотой и сильным основанием гидролизуются по аниону ( An n - ). При этом анионы соли связывают ионы Н + , а в растворе накапливаются ионы ОН - , что обуславливает щелочную среду (рН>7):

An n - + HOH ↔ Han (n -1)- + OH - , (при n=1 образуется HAn – слабая кислота).

Гидролиз солей, образованных двух- и трехосновными слабыми кислотами и сильными основаниями, протекает ступенчато

Рассмотрим гидролиз сульфида калия. К 2 S диссоциирует в растворе:

К 2 S ↔ 2К + + S 2- ;

К + - катион сильного основания, S 2 - анион слабой кислоты.

Катионы калия не принимают участия в реакции гидролиза, взаимодействуют с водой только анионы слабой сероводородной кислоты. В данной реакции по первой ступени происходит образование слабодиссоциирующих ионов HS - , по второй ступени – образование слабой кислоты H 2 S:

1-я ступень: S 2- + HOH ↔ HS - + OH - ;

2-я ступень: HS - + HOH ↔ H 2 S + OH - .

Образующиеся по первой ступени гидролиза ионы ОН - значительно снижают вероятность гидролиза по следующей ступени. В результате практическое значение обычно имеет процесс, идущий только по первой ступени, которым, как правило, и ограничиваются при оценке гидролиза солей в обычных условиях.