Сравнение сил тяжести на разных планетах. Сила тяжести на других планетах: подробный разбор

Радиация
Самой серьезной проблемой на Марсе является отсутствие магнитного поля, защищающего от солнечной радиации. Магнитное поле Марса слабее земного примерно в 800 раз. Вместе с разреженной атмосферой это увеличивает количество достигающего его поверхности ионизирующего излучения.
Радиационный фон на орбите Марса в 2,2 раза превышает радиационный фон на Международной космической станции. Средняя доза составила примерно 220 миллирадов в день. Объем облучения, полученного в результате пребывания в таком фоне на протяжении трех лет, приближается к установленным пределам безопасности для космонавтов.

Невесомость
На Марсе гравитация (притяжение) составляет всего 38% от земной (0,38 g). Степень влияния гравитации на здоровье людей при ее изменении от невесомости до 1 g не изучена, однако ничего хорошего ученые от нее не ждут. На земной орбите предполагается провести эксперимент на мышах с целью исследования влияния марсианской силы притяжения на жизненный цикл млекопитающих, тогда вопрос будет лучше прояснен.

Метеоритная опасность
Из-за своей разреженной атмосферы Марс гораздо в большей степени, чем Земля, подвержен метеоритной угрозе. В связи с этим гости Красной планеты рискуют попасть под метеоритный дождь, по сравнению с которым инцидент в Челябинске покажется детским лепетом. Поэтому и становится особенно актуальной проблема защиты строительной техники в том числе. В том числе придется решить проблему защиты строительных вышек тур http://www.versona.org/ и другого оборудования как на этапе создания поселения, так и позже, когда начнет развиваться сфера услуг, в частности предоставление технки в аренду.


Вредная пыль

На Марсе здоровью космонавтов будут угрожать гораздо более серьезные опасности, чем обычно. Например, простая пыль на Марсе намного опаснее лунной. Ученые подозревают, что эта пыль содержит в себе очень неприятные компоненты - мышьяк и шестивалентный хром, способный при контакте вызывать серьезные ожоги кожи и глаз.

Представим себе, что мы отправляемся в путешествие по Солнечной системе. Какова сила тяжести на других планетах? На каких мы будем легче, чем на Земле, а на каких тяжелее?

Пока мы еще не покинули Землю, проделаем такой опыт: мысленно опустимся на один из земных полюсов, а затем представим себе, что мы перенеслись на экватор. Интересно, изменился ли наш вес?

Известно, что вес любого тела определяется силой притяжения (силой тяжести). Она прямо пропорциональна массе планеты и обратно пропорциональна квадрату ее радиуса (об этом мы впервые узнали из школьного учебника физики). Следовательно, если бы наша Земля была строго шарообразна, то вес каждого предмета при перемещении по ее поверхности оставался бы неизменным.

Но Земля - не шар. Она сплюснута у полюсов и вытянута вдоль экватора. Экваториальный радиус Земли длиннее полярного на 21 км. Выходит, что сила земного притяжения действует на экваторе как бы издалека. Вот почему вес одного и того же тела в разных местах Земли неодинаков. Тяжелее всего предметы должны быть на земных полюсах и легче всего - на экваторе. Здесь они становятся легче на 1/190 по сравнению с их весом на полюсах. Конечно, обнаружить это изменение веса можно только с помощью пружинных весов. Небольшое уменьшение веса предметов на экваторе происходит также за счет центробежной силы, возникающей вследствие вращения Земли. Таким образом, вес взрослого человека, прибывшего с высоких полярных широт на экватор, уменьшится в общей сложности примерно на 0,5 кг.

Теперь уместно спросить: а как будет изменяться вес человека, путешествующего по планетам Солнечной системы?

Наша первая космическая станция - Марс. Сколько же человек будет весить на Марсе? Сделать такой расчет нетрудно. Для этого необходимо знать массу и радиус Марса.

Как известно, масса "красной планеты" в 9,31 раза меньше массы Земли, а радиус в 1,88 раза уступает радиусу земного шара. Следовательно, из-за действия первого фактора сила тяжести на поверхности Марса должна быть в 9,31 раза меньше, а из-за второго - в 3,53 раза больше, чем у нас (1,88 * 1,88 = 3,53). В конечном счете она составляет там немногим более 1/3 части земной силы тяжести (3,53: 9,31 = 0,38). Таким же образом можно определить напряжение силы тяжести на любом небесном теле.

Теперь условимся, что на Земле космонавт-путешественник весит ровно 70 кг. Тогда для других планет получим следующие значения веса (планеты расположены в порядке возрастания веса):

Плутон 4,5 Меркурий 26,5 Марс 26,5 Сатурн 62,7 Уран 63,4 Венера 63,4 Земля 70,0 Нептун 79,6 Юпитер 161,2
Как видим, Земля по напряжению силы тяжести занимает промежуточное положение между планетами-гигантами. На двух из них - Сатурне и Уране - сила тяжести несколько меньше, чем на Земле, а на двух других - Юпитере и Нептуне - больше. Правда, для Юпитера и Сатурна вес дан с учетом действия центробежной силы (они быстро вращаются). Последняя уменьшает вес тела на экваторе на несколько процентов.

Следует заметить, что для планет-гигантов значения веса даны на уровне верхнего облачного слоя, а не на уровне твердой поверхности, как у земноподобных планет (Меркурия, Венеры, Земли, Марса) и у Плутона.

На поверхности Венеры человек окажется почти на 10% легче, чем на Земле. Зато на Меркурии и на Марсе уменьшение веса произойдет в 2,6 раза. Что же касается Плутона, то на нем человек будет в 2,5 раза легче, чем на Луне, или в 15,5 раза легче, чем в земных условиях.

А вот на Солнце гравитация (притяжение) в 28 раз сильнее, чем на Земле. Человеческое тело весило бы там 2 т и было бы мгновенно раздавлено собственной тяжестью. Впрочем, еще не достигнув Солнца, все превратилось бы в раскаленный газ. Другое дело - крошечные небесные тела, такие как спутники Марса и астероиды. На многих из них по легкости можно уподобиться... воробью!

Вполне понятно, что путешествовать по другим планетам человек может только в специальном герметичном скафандре, снабженном приборами системы жизнеобеспечения. Вес скафандра американских астронавтов, в котором они выходили на поверхность Луны, равен примерно весу взрослого человека. Поэтому приведенные нами значения веса космического путешественника на других планетах надо по меньшей мере удвоить. Только тогда мы получим весовые величины, близкие к действительным.

>>Физика: Сила тяжести на других планетах

До изобретения телескопа было известно лишь семь планет: Меркурий, Венера , Марс, Юпитер, Сатурн, Земля и Луна. Их количество многих устраивало. Поэтому, когда в 1610 г. вышла книга Галилея «Звездный вестник», в которой он сообщил, что с помощью своей «зрительной трубы» ему удалось обнаружить еще четыре небесных тела, «никем еще не виданные от начала мира до наших дней» (спутники Юпитера), то это вызвало сенсацию. Сторонники Галилея радовались новым открытиям, противники же объявили ученому непримиримую войну.
Уже через год в Венеции вышла книга «Размышления об астрономии, оптике и физике», в которой автор утверждал, что Галилей заблуждается и число планет должно быть обязательно семь, так как, во-первых, в Ветхом Завете упоминается семисвечник (а это означает семь планет), во-вторых, в голове имеется лишь семь отверстий, в-третьих, существует только семь металлов и, в-четвертых, «спутники не видны для простого глаза, а поэтому и не могут оказывать влияние на Землю, следовательно, они не нужны, а поэтому они не существуют».
Однако подобными аргументами нельзя было остановить развитие науки, и теперь мы точно знаем, что спутники Юпитера существуют и число планет вовсе не равно семи. Вокруг Солнца обращаются девять больших планет (Меркурий, Венера, Земля, Марс, Юпитер, Сатурн, Уран, Нептун и Плутон, из которых лишь первые две не обладают спутниками) и свыше трех тысяч малых планет, называемых астероидами .
Спутники обращаются вокруг своих планет под действием их гравитационного поля. Сила тяжести на поверхности каждой из планет может быть найдена по формуле F т=mg , где g=GМ/R2 - ускорение свободного падения на планете. Подставляя в последнюю формулу массу М и радиус R разных планет, можно рассчитать, чему равно ускорение свободного падения g на каждой из них. Результаты этих расчетов (в виде отношения ускорения свободного падения на данной планете к ускорению свободного падения на поверхности Земли) приведены в таблице 7.
Таблица 7

Из этой таблицы видно, что наибольшее ускорение свободного падения и, следовательно, наибольшая сила тяжести на Юпитере. Это самая большая планета Солнечной системы; ее радиус в 11 раз, а масса в 318 раз больше, чем у Земли. Слабее всего притяжение на далеком Плутоне. Эта планета меньше Луны: ее радиус всего лишь 1150 км, а масса в 500 раз меньше, чем у Земли!
Еще меньшей массой обладают малые планеты Солнечной системы. 98% этих небесных тел обращаются вокруг Солнца между орбитами Марса и Юпитера, образуя так называемый пояс астероидов . Первый и самый большой астероид - Церера был открыт в 1801 г. Его радиус около 500 км, а масса примерно 1,2 1021 кг (т.е. в 5000 раз меньше, чем у Земли). Нетрудно подсчитать, что ускорение свободного падения на Церере примерно в 32 раза меньше, чем на Земле! Во столько же раз меньше там оказывается и вес любого тела. Поэтому космонавт, оказавшийся на Церере, смог бы поднять груз массой 1,5 т (рис. 110).

На Церере, однако, пока еще никто не был. А вот на Луне люди уже побывали. Впервые это произошло летом 1969 г., когда космический корабль «Аполлон-11» доставил на наш естественный спутник трех американских астронавтов: Н. Армстронга, Э. Олдрина и М. Коллинза. «Конечно,- рассказал потом Армстронг,- в условиях лунного притяжения хочется прыгать вверх... Наибольшая высота прыжка составляла два метра - Олдрин прыгнул до третьей ступеньки лестницы лунной кабины. Падения не имели неприятных последствий. Скорость настолько мала, что нет оснований опасаться каких-либо травм».
Ускорение свободного падения на Луне в 6 раз меньше, чем на Земле. Поэтому, прыгая вверх, человек поднимается там на высоту, в 6 раз большую, чем на Земле. Чтобы подпрыгнуть на Луне на 2 м, как это сделал Олдрин, требуется приложить такое же усилие, что и на Земле при прыжке на высоту 33 см.
Первые астронавты находились на Луне 21 ч 36 мин. 21 июля они стартовали с Луны, а 24 июля «Аполлон-11» уже приводнился в Тихом океане. Люди покинули Луну, но на ней осталось пять медалей с изображениями пяти погибших космонавтов. Это Ю. А. Гагарин, В. М. Комаров, В. Гриссом, Э. Уайт и Р. Чаффи.

???
1. Перечислите все большие планеты, входящие в состав Солнечной системы.
2. Как называется самая большая из них и самая маленькая?
3. Во сколько раз вес человека на Юпитере превышает вес того же человека на Земле?
4. Во сколько раз сила тяжести на Марсе меньше, чем на Земле?
5. Что вы знаете о Церере?
6. Почему походка астронавтов на Луне напоминала скорее прыжки, чем обычную ходьбу?

Содержание урока конспект урока опорный каркас презентация урока акселеративные методы интерактивные технологии Практика задачи и упражнения самопроверка практикумы, тренинги, кейсы, квесты домашние задания дискуссионные вопросы риторические вопросы от учеников Иллюстрации аудио-, видеоклипы и мультимедиа фотографии, картинки графики, таблицы, схемы юмор, анекдоты, приколы, комиксы притчи, поговорки, кроссворды, цитаты Дополнения рефераты статьи фишки для любознательных шпаргалки учебники основные и дополнительные словарь терминов прочие Совершенствование учебников и уроков исправление ошибок в учебнике обновление фрагмента в учебнике элементы новаторства на уроке замена устаревших знаний новыми Только для учителей идеальные уроки календарный план на год методические рекомендации программы обсуждения Интегрированные уроки

Если у вас есть исправления или предложения к данному уроку,

Юпитер

Масса этого газового гиганта превышает массу нашей старушки Земли более чем в 300 раз, более того, его масса в два раза больше, чем все вместе взятые планеты солнечной системы! Только представьте себе, какая это огромная масса. И вся эта масса состоит в основном из Водорода и Гелия. Два этих газа составляют основу верхних слоев. Ученые предполагают, что ядро планеты все-таки состоит из более тяжелых элементов. Но точно никто не знает. Вокруг Юпитера вращается, по меньшей мере, 63 луны. Четыре крупнейших из них первым обнаружил в 1610 году, Галилео Галилей. Они позже так и были названы в честь него «галилеевыми». Не правда ли занимательно, но дальше лучше! Примерно 15 лет назад, в астрофизике укоренилась теория о том, что у этого гиганта есть интереснейший свойство. Оказывается, что эта планета, то и есть Юпитер, для нашей Земли несет, можно сказать, жизненно важную функцию. Благодаря своей огромной массе и быстрому вращению -- этот гигант обладает повышенной силой притяжения. Для сравнения можем взять наше земное притяжение, к которому мы все с вами привыкли. На земле коэффициент силы тяжести равен 10 Н/кг. На Юпитере этот же коэффициент равняется 24 Н/кг. Грубо говоря, если бы вы оказались вдруг на Юпитере, вы бы весили примерно в 2,5 раза больше. Исходя из изложенных выше данных, логично предположить, что все космические объекты, пролетающие поблизости с Юпитером, будут менять свою траекторию, вплоть до полного изменения курса и падения на поверхность газового гиганта.

юпитер планета сила космос

В подтверждение данной теории, можно привести тот факт, что у одного из спутников Юпитера, Ганимеда, диаметр превосходит значение диаметра планеты солнечной системы, Меркурия. В силу того, что на Ганимеда действует еще и притяжение нашей звезды то и есть Солнца, она не падает на Юпитер, но и не отрывается от него. Ганимеда движется вокруг Юпитера по околопланетной орбите созданной двумя силами: притяжением Юпитера и притяжением Солнца. Вот такой силищей обладает этот гигант, что уже говорить об астероидах, масса которых гораздо меньше массы Ганимеда. Если рассматривать схему построения планет, то выходит, что ближе к Солнцу, находится наша Земля. Далее следует Марс, за ним Юпитер. А за Юпитером стоит очень интересная планета и называется она, как вы уже, наверное, догадались -- Сатурн. Говорить о Сатурне можно много, но сегодня нас интересует только один момент. Сатурн окружен поясом, состоящим из метеоритов. Так вот следуя все той же логике, мы можем предположить, что время от времени из этого пояса некоторые метеориты могут выпадать. Вот тут то и вступает в дело Юпитер. Мы уже сказали, что Юпитер, обладает очень сильным гравитационным полем. Поэтому метеорит, вырвавшись из пояса, и проходя в непосредственной близости от Юпитера, повинуясь законам мироздания, под действием силы притяжения Юпитера, неизбежно меняет свой курс. И, в конце концов, летит не к Солнцу, а к поверхности Юпитера. Если бы не Юпитер, то вполне вероятно, что траектория метеорита вполне могла бы пересечься с траекторией нашей Земли. И тогда кто знает, какие катастрофы могли бы принести эти столкновения. Нужно также отметить, что Сатурн является не единственным поставщиком метеоритов. Но все метеориты, чья траектория совпадает с траекторией Юпитера, в дальнейшем уже не представляют угрозы для планет расположенных ближе к солнцу, то и есть и нашей земле в том числе. Да и кроме метеоритов есть еще и другие небесные тела, которые могут представлять угрозу при столкновении. Вы, наверное, догадались, что я имею ввиду -- это кометы. Кометы проникают в нашу Солнечную систему в основном из облака Орта, оно представляет собой внешнюю область, в пределах которой вращаются кометы в очень большом количестве. Так вот некоторые ученые-астрофизики предполагают, что Юпитер способен «отбрасывать» космические тела, прилетающие в нашу систему из облака Оорта.

Недавно группой ученых был создан ряд компьютерных моделей нашей Солнечной системы. В этих моделях наша система развивалась в разных вариантах построения. В некоторых Юпитер вообще был убран из Солнечной системы. В других случаях его масса была уменьшена. Так вот исследования показали, что если бы Юпитера, не было совсем, то вероятность столкновения нашей земли с Космическим телом было бы снижена на 30% . Но здесь следует сказать, что влияние на пояс астероидов, можно сказать крупнейший пояс, находящийся между Юпитером и Марсом, до конца не изучено. Так что результат не может быть точным. Но к поразительным результатам привело исследование, в котором масса Юпитера была уменьшена в четыре раза по отношению к настоящей массе. В результате было выявлено, что вероятность бомбардировки астероидами земли была выше на 500%, чем в случае, где планета Юпитер отсутствует вообще. Исходя из всего выше сказанного, можно предположить, что газовый гигант все-таки имеет значимое значение для защиты нашей Земли от атак из космоса.

Описание презентации по отдельным слайдам:

1 слайд

Описание слайда:

Сила тяжести на других планетах. МАОУ «Лицей №8» Презентация:Гилевой Владиславы, Осиповой Ксении. Руководитель:Голдобина Ольга Валерьевна.

2 слайд

Описание слайда:

Цель. Узнать подробнее о силе притяжения и силе тяжести. Выяснить на какой планете человек тяжелее, а на какой легче всего!?

3 слайд

Описание слайда:

Сила притяжения (сила тяжести). Представим себе, что мы отправляемся в путешествие по Солнечной системе. Какова сила тяжести на других планетах? На каких мы будем легче, чем на Земле, а на каких тяжелее? Пока мы еще не покинули Землю, проделаем такой опыт: мысленно опустимся на один из земных полюсов, а затем представим себе, что мы перенеслись на экватор. Интересно, изменился ли наш вес?

4 слайд

Описание слайда:

Известно, что вес любого тела определяется силой притяжения (силой тяжести). Она прямо пропорциональна массе планеты и обратно пропорциональна квадрату ее радиуса (об этом мы впервые узнали из школьного учебника физики). Следовательно, если бы наша Земля была строго шарообразна, то вес каждого предмета при перемещении по ее поверхности оставался бы неизменным. Сила притяжения (сила тяжести).

5 слайд

Описание слайда:

Где же мы легче??? Но Земля - не шар.. Экваториальный радиус Земли длиннее полярного на 21 км. Выходит, что сила земного притяжения действует на экваторе как бы издалека. Вот почему вес одного и того же тела в разных местах Земли неодинаков. Тяжелее всего предметы должны быть на земных полюсах и легче всего - на экваторе. Здесь они становятся легче на 1/190 по сравнению с их весом на полюсах.

6 слайд

Описание слайда:

Небольшое уменьшение веса предметов на экваторе происходит также за счет центробежной силы, возникающей вследствие вращения Земли. Таким образом, вес взрослого человека, прибывшего с высоких полярных широт на экватор, уменьшится в общей сложности примерно на 0,5 кг.

7 слайд

Описание слайда:

Следует заметить, что для планет-гигантов значения веса даны на уровне верхнего облачного слоя, а не на уровне твердой поверхности, как у земноподобных планет (Меркурия, Венеры, Земли, Марса) и у Плутона. На поверхности Венеры человек окажется почти на 10% легче, чем на Земле. Зато на Меркурии и на Марсе уменьшение веса произойдет в 2,6 раза. Что же касается Плутона, то на нем человек будет в 2,5 раза легче, чем на Луне, или в 15,5 раза легче, чем в земных условиях.

8 слайд

Описание слайда:

Теперь условимся, что на Земле космонавт-путешественник весит ровно 70 кг. Тогда для других планет получим следующие значения веса (планеты расположены в порядке возрастания веса): Плутон:4,5 Меркурий:26,5 Марс:26,5 Сатурн:62,7 Уран:63,4 Венера:63,4 Земля:70,0 Нептун:79,6 Юпитер:161,2

9 слайд

Описание слайда:

… Как видим, Земля по напряжению силы тяжести занимает промежуточное положение между планетами-гигантами. На двух из них - Сатурне и Уране - сила тяжести несколько меньше, чем на Земле, а на двух других - Юпитере и Нептуне - больше. Правда, для Юпитера и Сатурна вес дан с учетом действия центробежной силы (они быстро вращаются). Последняя уменьшает вес тела на экваторе на несколько процентов.

10 слайд

Описание слайда:

Как известно, масса "красной планеты" в 9,31 раза меньше массы Земли, а радиус в 1,88 раза уступает радиусу земного шара. Следовательно, из-за действия первого фактора сила тяжести на поверхности Марса должна быть в 9,31 раза меньше, а из-за второго - в 3,53 раза больше, чем у нас (1,88 * 1,88 = 3,53). В конечном счете она составляет там немногим более 1/3 части земной силы тяжести (3,53: 9,31 = 0,38). Таким же образом можно определить напряжение силы тяжести на любом небесном теле.