Недостатки искусственного освещения. Виды и источники искусственного освещения

Основными понятиями, характеризующими свет, являются световой поток, сила света, освещённость и яркость.

Световым потоком называют поток лучистой энергии, оцениваемый глазом по световому ощущению.

Хорошее освещение действует тонизирующие, создаёт хорошее настроение, улучшает протекание основных процессов нервной высшей деятельности.

Улучшение освещённости способствует улучшению работоспособности даже в тех случаях, когда процесс труда практически не зависит от зрительного восприятия.

90% информации человек получает через органы зрения. Свет оказывает положительное влияние на обмен веществ, сердечнососудистую систему, нервно-психическую сферу. Рациональное освещение способствует повышению производительности труда, его безопасности. При недостаточном освещении и плохом его качестве происходит быстрое утомление зрительных анализаторов, повышается травматичность. Слишком высокая яркость вызывает явление слепимости, нарушение функции глаза.

Искусственное освещение: создаётся искусственными источниками света (лампа накаливания и т.д.). Применяется при отсутствии или недостатке естественного. По назначению бывает: рабочим, аварийным, эвакуационным, охранным, дежурным.

По устройству бывает: местным, общим, комбинированным. Устраивать одно местное освещение нельзя.

Рациональное искусственное освещение должно обеспечивать нормальные условия для работы при допустимом расходе средств, материалов и электроэнергии.

До изобретения сверхярких светодиодов белого цвета (то есть с широким спектром излучения), человечество, казалось бы, располагало широчайшим арсеналом электрических источников света. Самые распространенные - лампы накаливания. Простые, дешевые, неприхотливые, они долгое время являлись абсолютным чемпионом по распространенности, попутно эволюционировав в еще один подвид - галогенные лампы, самые мощные по световому потоку. Но при всех своих достоинствах, лампы накаливания обладали и рядом существенных недостатков: низкий КПД, требовательность к питающему напряжению, конструктивную непрочность и хрупкость, подверженность выходу из строя от вибрации и перегрузок. Не говоря уже о том, что создать лампу накаливания, скажем, синего цвета практически нереально - чтобы получить синий цвет, нить нужно раскалить до десятка тысяч градусов по Цельсию - ни один из известных металлов или сплавов не может выдержать такую температуру. Поэтому различные цвета свечения получались путем применения световых фильтров, конечно же, на порядки снижая световой поток. В общем - неэффективно. Да и сильный нагрев ламп накаливания постоянно приводил к проблемам установки и размещения.

Более интересными казались газонаполненные люминесцентные лампы. Там источником света служило покрытие-люминофор, нанесенное на внутреннюю сторону колбы лампы. Светиться люминофор заставляло ультрафиолетовое излучение, получаемое путем прохождения высоковольтного разряда через газ внутри колбы. Лампы этого типа имеют более высокий КПД, комфортный спектр видимого света. Но они более дороги, менее надежны, требуют сложного высоковольтного источника питания. Не говоря уж о том, что помимо видимого света излучают еще ультрафиолет вплоть до рентгеновского спектра. Немного, но излучают - а это может нанести вред здоровью человека.

Существует еще множество специальных типов ламп. Это индукционные, ртутные, дуговые лампы, неоновые источники света, ксеноновая дуговая лампа, различные виды газоразрядных ламп. Но все они имеют ряд недостатков и пригодны только для узкой области применения. Светодиоды же, даже на сегодняшнем технологическом уровне, обладают настолько широким потенциалом применения, что вполне возможным становится предположение о скором вытеснении светодиодами практически всех прочих видов электрических источников света. Рассмотрим достоинства и недостатки светодиодных ламп.

Достоинства светодиодного источника света:

Высокий КПД. Светодиодные лампы наиболее экономично используют электроэнергию, позволяя получить соотношение (сила света / ватт энергии) на два порядка (в сто раз!) лучшее, чем у самых совершенных ламп накаливания. То есть для той же освещенности требуется в сто раз меньше электроэнергии.

Практически нулевая инертность светодиодов.

Срок службы светодиодных ламп как минимум в 25 раз больше, чем у традиционной лампочки накаливания.

В отличие от обычных ламп, возможность получить любой цвет излучения в видимом и невидимых спектрах, от инфракрасного до жесткого ультрафиолета.

Безопасность использования. Нет ни существенного нагрева, ни побочных излучений, не нужно опасно высокое напряжение, не используются ядовитые материалы, нет опасности получить травму из-за взрыва или разрушения осветительного прибора.

Простота создания направленных источников света.

К недостаткам можно отнести пока что весьма высокую цену. Светодиодные лампы пока не получили массовой распространенности (хотя понятно, что это дело времени), что обуславливает высокую стоимость. Второй недостаток сродни первому - требуется специальный источник питания - стабильного тока.

Аспирационная сеть производительностью I, ежечасно отводит от оборудования органическую пыль П в количестве G. Перед выбросом в атмосферу воздух очищается от пыли в циклоне. Концентрация пыли в воздухе на выходе из циклона Свых

Определить эффективность очистки воздуха в циклоне. Соответствует ли содержание пыли в выбрасываемом воздухе нормативным требованиям?

От каких факторов зависит эффективность очистки пылеулавливающего оборудования? Укажите достоинства и недостатки циклонов.

Эффективность очистки воздуха в циклоне определяют по формуле:

Е = L - Свых / 100

E = 16 - 55 /100 = 0,23

Фактором определяющим эффективность очистки пылеулавливающего оборудования является правильное применение аппаратов; стоимость очистки; расход электроэнергии; производительность.

Циклоны просты в разработке и изготовлении, надёжны, высокопроизводительны, могут использоваться для очистки агрессивных и высокотемпературных газов и газовых смесей. Недостатками являются высокое гидравлическое сопротивление, невозможность улавливания пыли с малыми размерами частиц и малая долговечность (особенно при очистке газов от пыли с высокими абразивными свойствами).

авария давление безопасный освещение

Искусственное освещение предусматривается в помещениях, в которых недостаточно естественного света или для освещения помещения в те часы суток, когда естественный свет отсутствует.

По конструктивному исполнению искусственное освещение может быть двух видов: общее и комбинированное, когда к общему освещению добавляется местное, концентрирующее световой поток непосредственно на рабочих местах. Общее освещение подразделяется на общее равномерное освещение (при равномерном распределении светового потока без учета расположения оборудования) и общее локализованное освещение (при распределении светового потока с учетом расположения рабочих мест).

Комбинированное освещение имеет ряд преимуществ перед общим освещением:

Уменьшается общий расход электрической энергии за счет уменьшения установленной мощности источников света из-за близкого расположения местных светильников к рабочей поверхности;

Происходит экономия электрической энергии за счет выключения светильников местного освещения на свободных рабочих местах;

Повышается видимость рельефных деталей за счет индивидуального выбора местных светильников;

Ограничиваются тени и блики на рабочих местах;

Имеется возможность создания высоких уровней освещенностина наклонных поверхностях.

Применение одного местного освещения внутри зданий не допускается. В промышленных предприятиях рекомендуется применять систему комбинированного освещения там, где выполняются точные зрительные работы, где оборудование создает глубокие, резкие тени или рабочие поверхности расположены вертикально. Система общего освещения может быть рекомендована в помещениях, где по всей площади выполняются однотипные работы, а также в административно-конторских, складских помещениях и проходных. Если рабочие места сосредоточены на отдельных участках, например, у разметочных плит, столов ОТК, целесообразно прибегать к локализованному размещению светильников общего освещения.

Искусственное освещение устраняет перечисленные выше недостатки естественного освещения и обеспечивает оптимальный световой режим.

Искусственное освещение подразделяется на рабочее, аварийное, охранное и дежурное.

Рабочее освещение является обязательным для всех помещений, зданий, а также участков открытых пространств. Оно служит для обеспечения нормальных условий работы, прохода людей, проезда транспорта.

Аварийное освещение разделяется, в своюочередь, на освещение безопасности и эвакуационное.

Освещение безопасности предусматривают в тех случаях, когда отключение рабочего освещения и связанное с этим нарушение обслуживания оборудования и механизмов может вызвать:

Взрыв, пожар, отравление людей;


Длительное нарушение технологического процесса;

Нарушение работы таких объектов, как электрические станции, узлы радио- и телевизионных передач и связи, диспетчерские пункты, насосные установки водоснабжения, канализации и теплофикации, установки вентиляции и кондиционирования воздуха для производственных помещений, в которых недопустимо прекращение работ, и т.п.;

Нарушение режима детских учреждений независимо от числа находящихся в них детей.

Эвакуационное освещение в помещениях или местах проведения работ вне зданий следует предусматривать:

В местах, опасных для прохода людей;

В проходах и на лестницах, служащих для эвакуации людей (есличисло эвакуируемых более 50 человек);

По основным проходам производственных помещений, в которых работают более 50 человек;

На лестничных клетках жилых зданий высотой шесть этажей и более;

В производственных помещениях без естественного света и т.п.

Источники света аварийного освещения могут включаться одновременно со светильниками основного освещения и постоянно гореть или включаться автоматически только при прекращении питания нормального освещения.

Охранное освещение (при отсутствии специальных технических средств охраны) предусматривается вдоль границ территорий, охраняемых в ночное время.

Дежурное освещение - освещение помещений в нерабочее время. При необходимости часть светильников рабочего или аварийного освещения может использоваться для дежурного освещения

Для искусственного освещения рабочих зон электрическим светом используется прямой, отраженный и рассеянный свет (рис. 4.4).

Рис. 4.4. Виды светильников в зависимости от доли светового потока, приходящейся на нижнюю полусферу:

П - прямого света; Р - рассеянного света; О - отраженного света

Выбор тех или иных светильников по светораспределению зависит от характера выполняемых в помещении работ, возможности запыления, загрязнения воздушной среды, отражательной способности поверхностей в помещении. Например, светильники рассеянного и отраженного света применяются в таких помещениях, где требуется большая равномерность освещения, когда необходимо смягчить резкость теней или бликов на поверхностях с большим отражением и т.д.

Нормирование параметров искусственного освещения.

Согласно СНиП 23-09-95 нормируемыми параметрами искусственного освещения являются :

Освещенность рабочей поверхности Е, лк;

Показатель ослепленности Р, %;

Коэффициент пульсации освещенности К п ,%.

Освещенность рабочей поверхности - плотность светового потока на освещаемой им поверхности:

, (4.4)

где Ф - плотность светового потока, лм; S - площадь поверхности, освещаемой световым потоком, м 2 .

В качестве нормативной величины освещенности задается ее минимальное значение, при котором выполнение определенной работы не вредит зрению работника. Е мин задается для наиболее темного участка рабочей поверхности. Она устанавливается по характеристике зрительной работы, которая определяется зрительным напряжением при выполнении данной работы.

Всего выделяют восемь разрядов зрительных работ. Первые шесть разрядов (от работ очень высокой точности до грубых зрительных работ) классифицируются в зависимости от наименьшего размера объекта различения (толщина метки на шкале прибора, самая тонкая линия чертежа, трещина в изделии и т.п.), контраста объекта различения с фоном (малый, средний, большой) и характеристики фона (светлый, средний и темный). VII разряд устанавливает требования для работ со светящимися материалами и изделиями в горячих цехах, VIII- для общего наблюдения за ходом работ.

Показатель ослепленности - критерий оценки слепящего действия осветительной установки, определяемый выражением

Р = (S- 1) × 100 % , (4.5)

где S - коэффициент ослепленности, равный отношению пороговых разностей яркости при наличии и отсутствии слепящих источников в поле зрения. В производственных помещениях показатель ослепленности не должен превышать 20-40 % в зависимости от разряда зрительной работы.

При освещении производственных помещений газоразрядными лампами, питаемыми переменным током промышленной частоты (50 Гц), ограничивается глубина пульсации освещенности.

Коэффициент пульсации освещенности - критерий оценки относительной глубины колебаний освещенности в результате изменения во времени светового потока газоразрядных ламп при питании их переменным током, выражающийся формулой

где Е макс, Е мин - соответственно максимальное и минимальное значения освещенности за период ее колебания, лк; E c р - среднее значение освещенности за этот же период, лк.

Величина коэффициента пульсации в зависимости от системы освещения и характера выполняемой работы не должна превышать 10-20 % (при работах, связанных с наблюдением за видеотерминалами ЭВМ, К п - не более 5 %).

В настоящее время для искусственного освещения применяются следующие источники света:

Лампы накаливания, включая галогенные;

Дуговые натриевые газоразрядные лампы;

Дуговые ртутные галогенные лампы.

При необходимости различать цвета;

При работах, связанных с длительным напряжением зрения;

В производственных помещениях с непрерывным циклом производства или работами в три смены;

В детских и школьных учреждениях;

В помещениях, где освещение используется в качестве архитектурного оформления интерьеров.

Недостатком наиболее распространенных люминесцентных ламп является пульсация их светового потока, глубина колебания которого может достигать 55 %. Пульсация светового потока, кратная частоте переменного тока, может вызвать в определенных случаях «стробоскопический эффект», нарушающий правильное зрительное восприятие движущихся предметов, когда вращающийся предмет может казаться неподвижным. Пульсация светового потока приводит к быстрому утомлению зрения. В современных многоламповых светильниках с помощью специальных электрических схем подключения ламп удается устранить этот недостаток.

Для расчета осветительной установки при равномерном размещении светильников общего освещения и горизонтальной рабочей поверхности основным является так называемый метод коэффициента использования светового потока или метод коэффициента использования осветительной установки. При этом методе учитывается как световой поток источников света, так и световой поток, отраженный от стен, потолка и других поверхностей помещения.

Расчет ведется по формуле:

где Ф л - световой поток одного светильника, лм; Е н - нормированная освещенность, лк; S -площадь помещения, м 2 ; Z = 1,15 - коэффициент, учитывающий отношение средней освещенности к минимальной, при освещении линиями люминесцентных светильников Z = 1,1; К 3 - коэффициент запаса, принимаемый в зависимости от загрязненности воздуха в помещении; N -число светильников; h - коэффициент использования светового потока.

Коэффициент использования светового потока определяется по светотехническим таблицам. Он зависит от КПД и кривой распределения силы света светильника, коэффициентов отражения потолка, пола и стен, высоты подвеса светильника над расчетной поверхностью и конфигурации помещения, которая определяется индексом (показателем) помещения:

где а , b - ширина и длина помещения, м; h p - высота подвеса светильника над расчетной поверхностью, м.

Минимальная требуемая освещенность устанавливается по СНиП 23-05-95 или отраслевым нормам. Число светильников подбирается с учетом оптимального их расположения. По требуемому световому потоку подбирается ближайшая стандартная лампа, определяется ее мощность, а затем мощность всей осветительной установки.

Для расчета локализованного и местного освещения горизонтальных и наклонных поверхностей и освещения в тех случаях, когда отраженным светом можно пренебречь, применяется точечный метод, где используется формула

где Е - освещенность, лк; I - сила света в направлении от источника на данную точку рабочей поверхности, кд; a - угол между нормалью к рабочей поверхности и направлением светового потока на источник; К 3 - коэффициент запаса; h р - высота подвеса светильника над рабочей поверхностью, м.

Сравнивать искусственные источники света друг с другом можно по следующим параметрам: номинальному напряжению питания U (В), электрической мощности лампы Р (Вт), световому потоку, излучаемому лампой Ф (лм), максимальной силе света J(кд); световой отдаче

Еv = Ф/Р (лм/Вт),

т.е. отношению светового потока лампы к ее электрической мощности; срок службы лампы и спектральный состав света.

Широкое применение в промышленности находят лампы накаливания. Их преимущества: удобство в эксплуатации, простота в изготовлении, низкая инерционность при включении, отсутствие дополнительных пусковых устройств, надежность работы при колебаниях напряжения и при различных метеорологических условиях окружающей среды. К недостаткам ламп накаливания относят: низкую световую отдачу (для ламп общего назначения Еv = 7...20 лм/Вт), сравнительно малый срок службы (до 2,5 тыс. ч), преобладание желтых и красных лучей в спектре, что не много отличает их спектральный состав от солнечного света.

Галогеновые лампы - лампы накаливания с йодным циклом получили распространение. Их преимущества перед лампами накаливания увеличение световой отдачи (до 40 лм/Вт), за счет повышения температуры накала нити. Так же увеличивается срок службы лампы до 3 тыс. ч., благодаря тому, что пары вольфрама, испаряющиеся с нити накаливания, соединяются с йодом и вновь оседают на вольфрамовую спираль, препятствуя распылению вольфрамовой нити. Галогеновые лампы имеют более близкий к естественному спектр излучения.

Основным преимуществом газоразрядных ламп перед лампами накаливания является большая световая отдача 40...110 лм/Вт. Они имеют значительно большой срок службы, до 8...12 тыс. ч. От газоразрядных ламп можно получить световой поток любого желаемого спектра, подбирая соответствующим образом инертные газы, пары металлов, люминоформ. По спектральному составу видимого света различают лампы дневного света (ЛД), дневного света с улучшенной цветопередачей (ЛЛД), холодного белого (ЛХБ), теплого белого (ЛТБ) и белого цвета (ЛБ). Основной недостаток газоразрядных ламп заключается в пульсации светового потока, что может вызвать стробоскопического эффект, заключающийся в искажении зрительного восприятия. Недостатком газоразрядных ламп является длительный период разгорания, необходимость применения специальных пусковых приспособлений, облегчающих зажигание ламп, зависимость работоспособности от температуры окружающей среды. Газоразрядные лампы могут создавать радиопомехи, исключение которых требует специальных устройств.

Достоинства светодиодных ламп заключается в следующем: световая отдача высокая, большой срок эксплуатации до 50 тысяч часов, могут иметь различные спектральные характеристики без применения светофильтров, безопасность использования, малые размеры, высокая прочность, отсутствие ртутных паров, низкое ультрафиолетовое и инфракрасное излучение, небольшое тепловыделение, устойчивость к вандализму. К недостаткам этих ламп относится: высокая цена, использование преобразователей напряжения, высокий коэффициент пульсаций светового потока без сглаживающего конденсатора, спектр немного отличается от солнечного.

По распределению светового потока в пространстве различают светильники прямого, преимущественно прямого, рассеянного, отраженного и преимущественно отраженного света. В зависимости от конструктивного исполнения различают светильники открытые, защищенные, закрытые, пылепроницаемые, влагозащитные, взрывозащищенные, взрывобезопасные.

Естественное или природное освещение - вид, получаемый от природных источников света. Внутренняя природная инсоляция помещения создается за счет направленной лучистой энергии солнца, рассеянных в атмосфере световых потоков, проникающих в помещение через световые проемы, и света, отраженного от поверхностей.

Искусственное освещение получают с помощью специальных источников светового излучения, а именно: ламп накаливания, люминесцентных или галогенных ламп. Искусственные источники света, также как и естественные, могут давать прямой, рассеянный и отраженный свет.

Особенности

Естественной инсоляции присуще важное свойство, связанное с изменением уровня освещенности в течение короткого временного промежутка. Изменения носят случайный характер. Изменить мощность светового потока не в силах человека, он может его только подкорректировать определенными средствами. Так как источник естественного света находится примерно на одном расстоянии от всех освещаемых предметов, то по локализации такое освещение может быть только общим.

Искусственный метод в отличие от природного в зависимости от удаленности и направления источника света позволяет сделать общую и местную локализацию. Местная подсветка с общим вариантом дает комбинированный вариант. Посредством искусственных источников достигаются световые показатели, необходимые для определенных условий труда и отдыха.

Плюсы и минусы двух видов освещения

Рассеянные и равномерные световые лучи естественного происхождения наиболее комфортны для глаз человека и обеспечивают неискаженное восприятие цвета. В то же время прямые лучи солнца имеют слепящую яркость и недопустимы на рабочих местах и в быту. Снижение уровня освещенности в условиях пасмурного неба или в вечернее время, т.е. неравномерное его распределение, не дает возможности ограничиться только естественным источником света. В период, когда длительность светового дня достаточно долгая, достигается значительная экономия энергопотребления, но при этом происходит перегрев помещения.

Основной недостаток искусственного освещения связан с несколько искаженным цветовым восприятием и достаточно сильной нагрузкой на зрительную систему, возникающей вследствие микропульсации потоков света. Используя в помещении точечное освещение, при котором мерцание ламп взаимно компенсируется и по своим характеристикам наиболее приближено к рассеянному солнечному свету, нагрузку на глаза можно минимизировать. Также точечный свет может осветить отдельную зону в пространстве и позволяет экономно относиться к энергоресурсам. Для искусственного освещения необходим источник энергии в отличие от естественного, но зато такое освещение имеет постоянное качество и силу светового потока, которые можно подобрать по своему усмотрению.

Применение

Применение только одного вида освещения в большинстве случаев нерационально и не соответствует потребностям человека в сохранении его здоровья. Так, полное отсутствие естественной инсоляции в соответствии нормативам по охране труда отнесено к вредным факторам. Квартиру без природного света даже трудно представить. Источники искусственного света позволяют максимально обеспечить комфортные параметры освещенности и кроме этого применяются в дизайнерском оформлении помещения. Для общего освещения жилого помещения люстры используются чаще всего. Для подсветки локальной зоны отлично подходят бра или торшеры. Благодаря абажуру или плафону свет от таких источников мягкий и рассеянный. Это свойство позволяет широко использовать такие светильники не только с практической целью освещения, но и для выделения какого-либо элемента интерьера. К тому же современные искусственные источники света настолько разнообразны и симпатичны, что и сами прекрасно украшают интерьер.

Министерство образования и науки Российской Федерации

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования

Ульяновский государственный технический университет

Кафедра «БЖД и промышленная экология»

Лабораторная работа № 16

Выполнил:

Студент группы РТд-31

Абрамов А.В

Кудрин А.Н

Ульяновск, 2012

Цель работы:

1.1. Овладеть методами оценки качественно-количественных характеристик освещения, эффективности данной осветительной установки для конкретной работы.

1.2. Ознакомиться и системами и видами освещения, с характеристиками и критериями выбора источников света и светильников для определенных работ и помещений.

1.3. Изучить принципы нормирования искусственного, естественного и нормированного освещения помещений для конкретной зрительной работы с учетом всех влияющих факторов.

1.4. Освоить методы расчета искусственного, естественного и нормированного освещения помещений (светотехнические расчеты).

1.5. Научиться работать с основными светотехническими измерительными приборами: люксметром, измерителем видимости и др.

Теоретическая часть.

1.Назовите факторы влияющие на выбор нормы искусственного рабочего освещения Е .

В действующем СНиП П-4-79 (с изменениями и дополнениями 1986 г.) все зрительные работы в зависимости от размера объекта различения разделены на 8 разрядов.

Объект различения – рассматриваемый предмет, отдельная его часть или дефект, который требуется различать в процессе работы (линия, риска, пятно, царапина и т.п.).

Разряд характеризует точность зрительной работы.

Фон – поверхность, прилегающая непосредственно к объекту различения, на которой он рассматривается.

Контраст объекта с фоном считается большим при K > 0,5 (объект и фон резко отличаются по яркости), средним при K < 0,2 (отличается мало).

2. Как определяется число светильников для освещения помещения?

Число светильников

3. Сколько ступений в шкале освещенности? Назовите максимальные и минимальные значения е?

Шкала нормированных значений освещенности лк (31 ступень):

0,2; 0,3; 0,5; 1; 2; 3; 5; 7; 10; 20; 30; 50; 75; 100; 150; 200; 300; 400; 500; 600; 750; 1000; 1250; 1500; 2000; 2500; 3000; 3500; 4000; 4500; 5000.

Е мин =0,2, Е макс =5000;

4.Назовите достоинства и недостатки системы общего освещения. Где она применяется?

Общее освещение в системе комбинированного обеспечивает равномерность распределения яркости, для чего его доля освещенности может составлять 10% и выше нормы для комбинированного освещения .

Общее искусственное освещение, как правило, применяют для освещения помещений со зрительными работами малой точности и грубых, т.е. с разрядами 5-7. Для работ средней и высокой точности его применяют при наличии обоснований, сделанных проектировщиком (например, невозможности или нецелесообразности устройства местного освещения в системе комбинированного).

5.Назовите достоинства и недостатки лн.

В лампах накаливания (ЛН) свет создается телом накала, раскаленным в результате прохождения через него электрического тока. ЛН могут быть вакуумными и газополными (заполненными инертным газом: аргон, криптон).

К достоинствам ЛН относятся :

    Почти полная независимость от условий окружающей среды, в том числе от температуры;

    Работоспособность даже при значительных отклонениях напряжения сети от номинального;

    Широкий сортимент мощностей и напряжений;

    Непосредственное включение в сеть без дополнительных аппаратов;

    Простота конструкции и удобство при эксплуатации;

    Сравнительно небольшие габариты;

    Отсутствие пульсации светового потока ввиду высокой тепловой инерционности тела накала;

    Небольшая стоимость.

Недостатками ЛН являются : преобладание в спектре желто-красных лучей, небольшая световая отдача по сравнению с ЛЛ и РЛ (в современных типах ЛН ее удалось значительно повысить), высокая (слепящая) яркость тела накала, ограниченная продолжительность горения.

Измерение освещенности с помощью люксметра.

Фотоэлектрический люксметр типа Ю16 предназначен для измерения освещенности (в люксах), создаваемой лампами накаливания, люминесцентными лампами и естественным дневным светом. Прибор имеет три основных предела измерения: 25, 100 и 500 лк и три дополнительных: 2500; 10000 и 50000 лк, получаемых с помощью фарфорового поглотителя, надеваемого на фотоэлемент (в случае замера большой искусственной и дневной естественной освещенности).

Рис. 8.1 Принципиальная схема люксметра.

Условия работы: температура окружающей среды от 10° до 35°С, относительная влажность до 80% .

Основная погрешность не превышает ± 10 - 15 % от измеряемой величины. Время успокоения подвижной части не более 5 секунд, класс точности 1.0.

Принцип действия прибора рис. 8.1 основан на явлении фотоэлектрического эффекта, когда при освещении поверхности селенового фотоэлемента в замкнутой цепи возникает ток, отклоняющий подвижную часть магнитоэлектрического измерителя И. Величина тока и, следовательно, отклонение стрелки измерителя пропорциональны освещенности на рабочей поверхности фотоэлемента.

На корпусе расположены два зажима для присоединения фотоэлемента и переключатель пределов измерения.

Перед измерением необходимо:

    расположить прибор горизонтально, учитывая, что установка его вблизи токоведущих проводов, создающих сильные магнитные поля, вблизи источника тепла (выше 40 °С) и в зонах влажности (более 80%) недопустима;

    проверить положение стрелки, которая должна находиться на нулевом делении шкалы при включенном фотоэлементе. В случае отклонения она может быть поставлена в нулевое положение с помощью винта, расположенного на лицевой стороне прибора (фотоэлемент при этом затемняется);

    подключить фотоэлемент к измерителю, соблюдая полярность, указанную на зажимах (+) и (-).

Измерение искусственной освещенности внутри помещения следует начинать при положении переключателя на пределе 500 лк и лишь при малом отклонении стрелки (меньше 10 делений) целесообразно перевести переключатель на предел 100 лк или еще ниже. При наличии освещенности более 500 лк измерения проводятся с применением поглотителя, одетого на фотоэлемент.

Измерение естественной освещенности внутри помещения и снаружи необходимо производить с поглотителем при положении переключателя на пределе 500 лк.

При отклонении стрелки менее чем на 10 делений разрешается переводит переключатель на меньшие пределы, а при величине 500 лк разрешается снять поглотитель при положении переключателя на пределе 500 лк.

При измерении фотоэлемент вносится в указанную зону под требуемым углом и производится отсчет по шкале. В том случае если измеряется освещенность, создаваемая люминесцентными лампами, показания люксметра умножаются на поправочные коэффициенты:

0.9 для ламп ЛД; 1.1 для ламп ЛБ; при использовании поглотителя на 100.

Замер естественной освещенности влечет за собой введение поправочного коэффициента, равного 0.8.

Обращение с прибором должно быть крайне осторожным. Запрещено: передвигать шторку фотоэлемента; подносить фотоэлемент к лампе; загрязнять поверхность фотоэлемента и поглотителя и прикасаться к ней; разбирать поглотитель; подвергать сотрясениям.

При измерении освещенности необходимо фиксировать в протоколе не только измеренные уровни, но и указывать площадь и высоту помещения, тип светильника, высоту его подвеса или установки над рабочей поверхностью, количество тип и мощность ламп, яркость стен, потолка и оборудования.

Указывается характер зрительной работы, число, время дня.

При измерении естественной освещенности указывается число и размеры окон. Дается эскиз помещения или рабочего места, отмечаются точки, где измерялась освещенность.