Закон полноты частей системы пример. Система законов развития техники (основы теории развития технических систем)

Приложение 5

Каждая техническая система, самостоятельно исполняющая любую функцию, состоит из четырых частей - двигатель, трансмиссия, работающий орган и средство управления. Если в системе отсутствует некоторая из этих частей, то ее функции выполняет человек или окружающая среда.

Двигатель – элемент технической системы, который является источником или накопителем энергии для выполнения требующих функций.

Трансмиссия - элемент технической системы, транспортирующий энергию от двигателя до работающего органа с преобразованием ее качественных характеристик.

Работающий орган - элемент технической системы, который передает энергию элемента окружающей среде и, который завершает выполнение необходимой функции.

Средство управления - элемент технической системы, который регулирует поток энергии по ее составляющим и согласовывает ее работу во времени и в пространстве.

Проводя анализ некоторой автономно работающей системы, будь то часы, холодильник, автоматическая ручка или телевизор, всюду можно отделить - двигатель, трансмиссию, работающий орган и средство управления. Если чего-то недосчитаемся, то, как мы говорили раньше, функцию этой части выполняет сам человек или окружающая среда.

Для того чтобы верно определить части системы, необходимо сначала определить ее функцию и согласно нее определить работающий орган, а со временем и другие части. Например, фрезерный станок. Что у него является работающим органом? Формируем основную функцию станка, то ради чего он создан. Основная функция - снимать лишний материал с заготовки путем резания. Какая часть станка завершает выполнение этой функции и отдает заготовке всю свою энергию? Конечно, это фреза, она и является работающим органом данной системы. Двигателем станка является электродвигатель. А все что находится между ним и фрезой, можно считать трансмиссией. Средство управления - всякие рукоятки, кнопки, а также программное обеспечение, если такое присущее станку.

В автомобиле: главная функция – это перевозки груза, работающий орган – колесо; трансмиссия – карданная передача, коробка переключения скоростей, рама; двигатель; средство управления рулевое колесо, тормоза, специальные приборы.

Учитывая, что средство управления непосредственно не задействовано в выполнении общей функции системы, его можно рассматривать как самостоятельную систему с собственной функцией и собственным набором частей. Например, система регулирования количества оборотов в дизельных двигателях имеет собственную функцию – регулирование проходного сечения топливопроводу и целый набор частей для ее осуществления. Кроме того каждую отдельную часть системы можно рассматривать как самостоятельную. Например, отдельно взятый у того же автомобиля двигатель внутреннего сгорания, имеет свою отделенную функцию - превратить давление газа в механическую энергию, точнее – во вращающий момент и передает энергию потребителю маховику. Он является работающим органом двигателя.


А что же в двигателе внутреннего сгорания является самым двигателем? Им будет горячая газовая смесь – она является источником энергии. Она является более высокодинамичной частью рассматриваемой технической системы, работающая на макроуровне вещества. Роль трансмиссии в двигателе выполняет поршень, шатун, кривошипный вал. Средством управления являются клапаны, разные регуляторы и т.д.

Если снова взять часть двигателя – карбюратор, насос или что-то другое, то в каждой из них можно отделить полный набор частей для выполнения своей определенной функции. Углубляясь в подсистему мы будем всегда находить все ту же славную четверку - двигатель, трансмиссия, работающий орган, средство управления. И так до тех пор, пока не достигнем структуры вещества, где функции этой части свернуты и выполняются молекулами и атомами, то есть проходит нормальный физико-химический процесс. Мы дошли до природы. Искусственная техническая система исчезла …

Тоже именно мы увидим, если будем углубляться в надсистему.

Кратко проследим основные этапы возникновения и развития частей технической системы.

Вспомним первую «самодвижущуюся » коляску – прообраз современного велосипеду. Сначала это была просто деревянная перекладина с двумя колесами. В народившейся системе присутствовал только один работающий орган – колеса. Роль двигателя, трансмиссии и средство управления выполнял сам всадник, тщательно отпихиваясь ногами от полотна дороги и наклоняя свой корпус для поворота в нужную сторону. Недаром слово «велосипед» в переводе на украинский язык означает «быстрые ноги».

Но согласитесь, отпихивать от дороги и тормозить по ней ногами опасно, да и возрастают затраты на подметки. Очевидно, лучше толкать ногами само колесо. Но здесь необходимо быть большим виртуозом, чтобы не попасть в спицы колес и своевременно убрать от них ногу. Работа ногами стала более легкой и безопасной, когда к оси колеса додумались прицепить педали в виде коловорота. Так появились зачатки трансмиссии, отошедшей от работающего органа. У сапожников мгновенно уменьшилось работы, а людей, соревнующихся в скорости, диаметр переднего колеса стал еще большим. Велосипед стал более скорым, но количество ударов об препятствия возросла. Было понятно, что переднее колесо каким-то образом должны поворачиваться, даже на телеге это есть. Произошло перенесение опыта с одной области техники на другую. На велосипеде появилось повторный элемент - руль – дышло. Сейчас уже можно не пугаться оград – появился орган управления, и снова стали увеличивать скорость путем увеличения диаметра переднего колеса с педалями. Все было чудесно, пока не определили, что при очередном увеличении диаметру колеса ноги всадника уже не достают педали. Прогресс остановился, необходимо было менять или всадника или трансмиссию велосипеда. Избрали второе. Зафиксировали педали на раме и связали их с колесом гибкой шарнирной связью. Трансмиссия поделилась на составные части, и это обеспечило развитие всей системе. С помощью цепи было достигнуто искусственное «удлинение» ноги. А когда цепь была перенесена на заднее колесо, то появились надежные тормоза и руль, сформировалась классическая форма велосипеда. Итак, появился работающий орган, трансмиссия, средство управления, но человек еще так и оставался «двигателем».

Отметим интересную деталь: перед появлением «существенного» двигателя техническая система старается компенсировать его отсутствие преобразованием из трансмиссии участка, возможного накапливать энергию. Так было с самодвижущейся тележкой Кулибина, водитель которого усиленно раскручивал маховик, накапливая в нем энергию, чтобы преодолеть восхождение в гору.

Прошло много времени прежде чем появились истинные «самодвижущиеся» коляски - мотоциклы и автомобили с собственным двигателем. Формирование основных частей техническая система прекратилась.

Хочется отметить одну общую для всех двигателей и систем особенность. Все они сначала использовали твердые сорта топлива – дерево и угли. Даже первые двигатели внутреннего сгорание сначала работали на раздробленном угле. Потом стали использовать жидкое топливо – керосин, бензин и т.п. Современный автомобильный парк интересно переходит на газовое топливо. А потом? В роле топлива будут постепенно использовать разные виды полей – инерционное (механическое поле), электрическое, электромагнитное, магнитное, ядерное, солнечное (мировое), гравитационное. Все эти двигатели уже разрабатываются.

Указанный путь есть типичным для двигателей всех систем – корабельных железнодорожных, авиационных, ракетных и т.д.

Совершенствуясь, техническая система постепенно вытесняет человеческую. Вспомните луноход или управляемый с помощью радио бульдозер. Человеку остается только избирать программу, за которой и будет выполняться система.

Остался последний вопрос: зачем все это необходимо знать?

Найдя основные составляющие - элементы системы и проанализировав их работу, изобретатель имеет возможность определить «чувствительное» место системы, возникающие в ней противоречие и принять правильное решение.

Закон полноты частей системы был разработан автором ТРИЗ Г.С. Альтшуллером. Он выглядит так:

1) отдельные элементы машины, механизма, процесса всегда находятся в тесной взаимосвязи;

2) развитие происходит неравномерно: одни элементы обгоняют в своем развитии другие. отстающие;

3) планомерное развитие системы (машины, механизма, процесса0 оказывается возможных до тех пор, пока не возникнут и не обострятся противоречия между более совершенными элементами системы и отстающими ее частями;

4) это противоречие является тормозом общего развития всей системы. Устранение возникшего противоречия и есть изобретение;

5) Коренное изменение одной части системы вызывает необходимость для функционально обусловленных изменений в других ее частях.

Многим дизайнерам не совсем понятно, каким образом ТРИЗ (теория решения изобретательских задач) Генриха Альтшуллера можно применять в работе. Альтшуллер написал книгу ТРИЗ — Найти идею. Но книга сложная, техническая и для дизайнера не адаптированная.

Я постарался адаптировать приёмы, законы и саму теорию именно для дизайнеров. Вы увидите как на основе законов развития технических систем (не нужно боятся этого термина, он вовсе не такой технический, каким кажется) можно прогнозировать развитие интерфейсов. Почему интерфейсов? Всё просто, дизайнерская задача — это сути создание интерфейса, интерфейса системы.

Давайте вместе прочитаем статью, сделаем выводы, а может и приведём свои примеры. Так интересней!
Поехали:)

ТРИЗ для дизайнера
Давайте сегодня попытаемся разобраться, как работает теория изобретательских задач Генриха Альтшуллера (ТРИЗ).

Вся наша техническая цивилизация держится на изобретениях, сделанных методом проб и ошибок. Столетиями укоренялось представление, что других методов нет. Творчество воспринималось как решение задач путём перебора, в слепую. Как следствие, творчество ассоциировали с озарением, интуицией, счастливым случаем.

Альтшуллер проанализировал свыше 40 000 патентов и пришёл к выводу, что все технические системы (ТС) развиваются закономерно. Все ТС развиваются на основе законов, которые базируются все основные механизмы решения изобретательских задач.

Законы достаточно просты, несмотря на их кажущую сложность. Вот они:
Статика — критерии жизнеспособности новых ТС
1. Закон минимальной работоспособности основных частей ТС
2. Закон сквозного прохода энергии через систему к её рабочему органу
3. Закон согласования ритмики частей ТС

Кинематика — характеризует направление развития независимо от технических и физических механизмов этого развития
4. Закон увеличения степени идеальности ТС
5. Закон увеличения степени динамичности ТС
6. Закон неравномерности развития частей ТС
7. Закон перехода в надсистему

Динамика — отражает тенденции развития современных систем
8. Закон увеличения управляемости (вепольности)
9. Закон увеличения степени дробления (дисперсности) рабочих органов ТС

Вкратце опишем их и на примерах поглядим как это работает.

1. Закон минимальной работоспособности основных частей ТС
Необходимым условием жизнеспособности ТС является наличие и минимальная работоспособность основных частей система.

Любая ТС, самостоятельно выполняющая какую-либо функцию, имеет основные части — двигатель, трансмиссию, рабочий орган и средство управления. Если в системе отсутствует какая-либо из этих частей, то её функцию выполняет человек или окружающая среда.

Двигатель — элемент ТС, являющийся преобразователем энергии, необходимой для выполнения требуемой функции. Источник энергии может находиться либо в системе (бензин в баке), либо в надсистеме (электроэнергия из внешней сети).

Трансмиссия — элемент, передающий энергию от двигателя к рабочему органу с преобразованием её качественных характеристик.

Рабочий орган — элемент, передающий энергию на обрабатываемый объект, и завершающий выполнение требуемой функции.

Средство управления — элемент, регулирующий поток энергии к частям ТС и согласующий их работу во времени и пространстве.

Пример основных частей ТС:
Фрезерный станок.
Рабочий орган — фреза.
Двигатель — электродвигатель станка.
Трансмиссия — всё, что находится между электродвигателем и фрезой.
Средство управления — человек-оператор, рукоятки и кнопки или программное управление.

Ещё пример:
CMS.
Рабочий орган — интерфейс
Двигатель — сервер
Трансмиссия — программный код
Средство управления — элементы интерфейса, предоставляющие инструменты для добавления, редактирования, удаления информации на сайте.

2. Закон сквозного прохода энергии через систему к её рабочему органу
Любая система для своего нормального функционирования, должна следовать закону сквозного прохода энергии. Это означает, что система должна не только получать энергию, но и видоизменяя пропускать ее через себя и отдавать в окружающую среду, для совершения полезного действия.

Если этого нет, система не работает, или, что более опасно, разрушается от перенапряжения, как разрушается паровой котел, когда приготовляемый в нем пар не используется.

Любая ТС является проводником и преобразователем энергии. Если энергия не будет проходить сквозь всю систему, то какая-то часть ТС не будет получать энергию, значит не будет и работать.

3. Закон согласования ритмики частей ТС
Согласование ритмики работы частей системы используют для того, чтобы добиться максимальных параметров ТС, наилучшей энергетической проводимости всех частей системы.

Части ТС должны согласовываться с функцией системы.

Пример:
Если главная функция — разрушить пласт, то вполне естественным будет использовать резонанс с целью сокращения расхода энергии. Согласование выражается в совпадении частот.

Из трёх этих законов можно вынести главное знание — это понимание того, что такое работоспособная система .

Дизайнеры думают, что их труд — самый важный в проекте. Ведь для пользователя системы продукт — это интерфейс системы, с ней он непосредственно работает. Именно от качественного интерфейса, от удобного и красивого интерфейса будет зависеть общий успех продукта.

Программисты думают — если ничего не будет работать, то никакой интерфейс не спасёт неработающую систему.

Успешность проекта не сильно зависит от качественного интерфейса, качества кода, красоты кнопок и вёрстки по сетке. В этом легко убедиться: в мире огромное количество страшных, неудобных, непродуманных вещей, которыми пользуются и которые имеют огромный коммерческий успех.

Происходит это, потому что успешность определяется лишь общей работоспособностью системы, а качественный интерфейс, эстетика и пр. могут лишь повысить КПД системы. Т. е. по сути являются довеском.

Работоспособность ТС удобно рассматривать в терминах веполей (см. 8. Закон увеличения управляемости). В основе работоспособной системы обязательно лежит полный веполь — веполь является схемой минимальной ТС.

Пример:
Почему одноклассники очень популярны среди взрослого населения, хотя там была платная регистрация, плохой интерфейс, дополнительные платные услуги? Дело в том, что веполь этой системы полный. Система выполняет главную задачу — позволяет найти друзей, одноклассников, коллег, с которыми не виделись много лет и общаться с ними, выложить фотки, проголосовать за них, поиграть в игры.

4. Закон увеличения степени идеальности ТС.
Все системы стремятся к идеальности, это универсальный закон. Система идеальна, если её нет, а функция осуществляется.


Казалось бы, все мы привыкли отвинчивать и завинчивать пробку бензобака — так вот, Ford постепенно внедряет на своих моделях горловину без отдельной крышки. Она закрывается самим лючком. Так что никаких хлопот с тем, куда ее девать, и нулевая вероятность потерять ее или забыть.
Идеальная крышка бензобака — это когда крышки нет, но функция крышки выполняется. В нашем примере эту функцию выполняет люк.

Пример из мира интерфейсов:
Идеальная система сохранения документов в текстовом редакторе — это её отсутствие, а функция должна выполняться. Что для этого нужно? Автоматическое сохранение и бесконечная отмена.

В жизни идеальная система редко достижима полностью, скорее она служит ориентиром.

5. Закон увеличения степени динамичности ТС
Динамизация — универсальный закон. Определяет направление развития всех ТС и позволяет решать некоторые изобретательские задачи. Зная закон увеличения степени динамичности, можно прогнозировать развитие ТС.

Пример из промышленного мира:
Рама первых велосипедов была жёсткой. Современные горные велосипеды оснащаются амортизационной вилкой и часто амортизационной задней подвеской.

Пример из веба:
В 90-х годах сайты были статичными. HTML-страницы хранились в виде html-файлов на сервере. Современные CMS-системы генерируют html-страницы динамично и хранятся в базе данных системы.

6. Закон неравномерности развития частей ТС
Развитие частей системы идёт неравномерно, чем сложнее система, тем неравномерное развитие её частей.

Пример из мира интерфейсов:
Разработчики многих программ или сайтов много времени уделяют быстроте выполнения операций, увеличению количества функций системы, но мало или почти не уделяют интерфейсу системы. Как следствие системой неудобно или сложно пользоваться.

7. Закон перехода в надсистему
Исчерпав ресурсы развития, система объединяется с другой системой, образуя новую, более сложную систему. Переход осуществляется по логике моносистема — бисистема — полисистема. Это неизбежный этап в истории всех ТС.

Переход моносистемы в би- или полисистему даёт новые свойста, хотя и усложняет систему. Но новые свойства окупают усложнения. Переход к полисистемам — эволюционный этап развития, при котором приобретение новых качеств происходит только за счёт количественных показателей.

Пример из мира промышленного дизайна:
Двухмоторный самолёт (бисистема) надёжней одномоторного (моносистема) и обладает большей маневренностью (новое качество).

Пример из мира интерфейсов:
Система 1С-Битрикс объединилась с другой родственной системой 1С-Предприятие, что позволило выгружать на сайт 1С-Битрикс каталог товаров и прайс-лист из 1С-Предприятие (новое качество).

На каком-то этапе развития в полисистеме начинают появляться сбои. Упряжка из более чем двенадцати лошадей становится неуправляемой, самолёт с двадцатью моторами требует многократного увеличения экипажа и трудноуправляем. Возможности полисистемы исчерпались.
Что дальше? Дальше — полисистема становится моносистемой, но на качественно новом уровне. При этом новый уровень возникает только при условии повышения динамизации частей системы, в первую очередь рабочего органа. Процесс будет повторяться неоднократно.

Пример:
Велосипедный ключ. Когда динамизировался его рабочий орган, т. е. губки стали подвижными, появился разводной ключ. Он стал моносистемой, но в тоже время способным работать со многими размерами болтов и гаек.

8. Закон увеличения управляемости (вепольности)
Отражает тенденции развития современных систем. Развитие ТС идёт в направление увеличения управляемости:
— увеличивается количество управляемых связей
— простые веполи переходят в сложные
— в веполи вводят вещества и поля, которые позволяют без существенного усложнения реализовать новые эффекты, расширить функциональные возможности и тем самым повысить
степень её идеальности.

Веполь — от вещество и поле.
Общий приём такой — имеется некоторое вещество, не поддающееся управлению (измерению, обработке). Чтобы управлять веществом вводят поле (электромагнитное, тепловое и т. д.).

Для построения минимальной технической системы нужны 2 вещества и поле.
Записывая задачи в вепольной форме, мы отбрасываем всё несущественное, выделяя причины возникновения задачи, т. е. болезни ТС, например недостроенность веполя.

Пример из промышленного дизайна:
Клиенты банков жалуются на списание средств с их картсчёта по несовершенными ими операциям. Банки терпят репутационные и финансовые издержки. Как быть?

Имеется плохо управляемое вещество — банкомат ().
Для защиты от скиммингового устройста введём магнитное поле, действующее на скимминг (второе вещество), которое мешает скиммингу считывать информацию с магнитной полосы банковской карты в картридере. Схематично это будет выглядеть так (вепольный треугольник).

Подобная технология имеется у Diebold:
Для борьбы со всеми известными способами скимминговых атак на банкоматы у нас уже есть портфель антискимминговых решений и сервис удаленного мониторинга Diebold ATM Security Protection Suite. В портфель входит специальное устройство, создающее электромагнитное поле вокруг банкомата и мешающее скиммеру считывать информацию с магнитной полосы банковской карты в картридерах, так что данные владельца карты надежно защищены.

Важно понимать, что поле может быть не только физическим, но и просто ментальным.

Пример из веба.
Есть товар — это первое вещество. Есть посетитель — это второе вещество. Товар должен действовать на посетителя в результате чего тот должен тратить деньги. Но товаров так много, что взаимодействие получается слабым.

В системе, только два вещества. Значит для полного веполя не хватает поля. Добавляем, например, персональные рекомендации.

9. Закон увеличения степени дробления (дисперсности) рабочих органов ТС
Развитие современных ТС идёт в направлении увеличения степени дробления (дисперсности) рабочих органов. В особенности типичен переход от рабочих органов на макроуровне к рабочих органам на микроуровне.

Пример из мира интерфейсов:
Рабочий орган в ТС сайта — интерфейс.
Твиттер в новой версии разбился на две колонки — слева одна, справа — другая.

Зная законы развития ТС, изобретатель или дизайнер уже может представлять, какой должна быть изменяемая им техническая система и что для этого нужно делать.

Большое спасибо за примеры Николаю Товеровскому и Артёму Горбунову.

Закон увеличения степени идеальности системы

Техническая система в своём развитии приближается к идеальности. Достигнув идеала, система должна исчезнуть, а её функция продолжать выполняться.

Основные пути приближения к идеалу:

· повышение количества выполняемых функций,

· «свертывание» в рабочий орган,

· переход в надсистему.

При приближении к идеалу техническая система вначале борется с силами природы, затем приспосабливается к ним и, наконец, использует их для своих целей.

Закон увеличения идеальности наиболее эффективно применяется к тому элементу, который непосредственно расположен в зоне возникновения конфликта или сам порождает нежелательные явления. При этом повышение степени идеальности, как правило, осуществляется применением незадействованных ранее ресурсов (веществ, полей), имеющихся в зоне возникновения задачи. Чем дальше от зоны возникновения конфликта будут взяты ресурсы, тем в меньшей степени удастся продвинуться к идеалу.

Закон S-образного развития технических систем

Эволюцию множества систем можно изобразить S-образной кривой, показывающей, как меняются во времени темпы её развития. Выделяются три характерных этапа:

1. «детство» . Идёт, как правило, достаточно долго. В этот момент идёт проектирование системы, её доработка, изготовление опытного образца, подготовка к серийному выпуску.

2. «расцвет» . Она бурно совершенствуется, становится всё более мощной и производительной. Машина выпускается серийно, её качество улучшается и спрос на неё растёт.

3. «старость» . С какого-то момента улучшать систему становится всё труднее. Мало помогают даже крупные увеличения ассигнований. Несмотря на усилия конструкторов, развитие системы не поспевает за всё возрастающими потребностями человека. Она пробуксовывает, топчется на месте, меняет свои внешние очертания, но остаётся такой, какая есть, со всеми своими недостатками. Все ресурсы окончательно выбраны. Если попытаться в этот момент искусственно увеличивать количественные показатели системы или развивать её габариты, оставляя прежний принцип, то сама система вступает в конфликт с окружающей средой и человеком. Она начинает больше приносить вреда, чем пользы.



В качестве примера рассмотрим паровоз. Вначале был достаточно долгий экспериментальный этап с единичными несовершенными экземплярами, внедрение которых вдобавок сопровождалось сопротивлением общества. Затем последовало бурное развитие термодинамики, совершенствование паровых машин, железных дорог, сервиса - и паровоз получает публичное признание и инвестиции в дальнейшее развитие. Затем, несмотря на активное финансирование, произошёл выход на природные ограничения: предельный тепловой КПД, конфликт с окружающей средой, неспособность увеличивать мощность без увеличения массы - и, как следствие, в области начался технологический застой. И, наконец, произошло вытеснение паровозов более экономичными и мощными тепловозами, и электровозами. Паровой двигатель достиг своего идеала - и исчез. Его функции взяли на себя ДВС и электромоторы - тоже вначале несовершенные, затем бурно развивающиеся и, наконец, упирающиеся в развитии в свои природные пределы. Затем появится другая новая система - и так бесконечно.

Закон динамизации

Надёжность, стабильность и постоянство системы в динамичном окружении зависят от её способности изменяться. Развитие, а значит и жизнеспособность системы, определяется главным показателем: степенью динамизации , то есть способностью быть подвижной, гибкой, приспосабливаемой к внешней среде, меняющей не только свою геометрическую форму, но и форму движения своих частей, в первую очередь рабочего органа. Чем выше степень динамизации, тем, в общем случае, шире диапазон условий, при которых система сохраняет свою функцию. Например, чтобы заставить крыло самолёта эффективно работать в существенно разных режимах полёта (взлёт, крейсерский полёт, полёт на предельной скорости, посадка), его динамизируют путём добавления закрылков, предкрылков, интерцепторов, системы изменения стреловидности и проч.

Однако, для подсистем закон динамизации может нарушаться - иногда выгоднее искусственно уменьшить степень динамизации подсистемы, тем самым упростив её, а меньшую стойкость/приспособляемость компенсировать созданием стабильной искусственной среды вокруг неё, защищённой от внешних факторов. Но в итоге совокупная система (над-система) всё же получает большую степень динамизации. Например, вместо того, чтобы приспосабливать трансмиссию к загрязнению путём её динамизации (самоочистка, самосмазка, перебалансировка), можно поместить её в герметичный кожух, внутри которого создана среда, наиболее благоприятная для движущихся частей (прецизионные подшипники, масляный туман, подогрев и проч.)

Другие примеры:

· В 10-20 раз снижается сопротивление движению плуга, если его лемех вибрирует с определенной частотой в зависимости от свойств грунта.

· Ковш экскаватора, превратившись в роторное колесо, породил новую высокоэффективную систему добычи полезных ископаемых.

· Автомобильное колесо из жёсткого деревянного диска с металлическим ободом стало подвижным, мягким и эластичным.

Закон полноты частей системы

Любая техническая система, самостоятельно выполняющая какую-либо функцию, имеет четыре основные части - двигатель, трансмиссию, рабочий орган и средство управления. Если в системе отсутствует какая-либо из этих частей, то её функцию выполняет человек или окружающая среда.

Двигатель - элемент технической системы, являющийся преобразователем энергии, необходимой для выполнения требуемой функции. Источник энергии может находиться либо в системе (например, бензин в баке для двигателя внутреннего сгорания автомобиля), либо в надсистеме (электроэнергия из внешней сети для электродвигателя станка).

Трансмиссия - элемент, передающий энергию от двигателя к рабочему органу с преобразованием её качественных характеристик (параметров).

Рабочий орган - элемент, передающий энергию на обрабатываемый объект, и завершающий выполнение требуемой функции.

Средство управления - элемент, регулирующий поток энергии к частям технической системы и согласующий их работу во времени и пространстве.

Анализируя любую автономно работающую систему, будь то холодильник, часы, телевизор или авторучка, везде можно видеть эти четыре элемента.

· Фрезерный станок. Рабочий орган: фреза. Двигатель: электродвигатель станка. Всё что находится между электродвигателем и фрезой можно считать трансмиссией. Средство управления - человек-оператор, рукоятки и кнопки, или программное управление (станок с программным управлением). В последнем случае программное управление «вытеснило» человека-оператора из системы.

Вопрос 3. Законы развития технических систем. Закон сквозного прохода энергию. Закон опережающего развития рабочего органа. Закон перехода «моно - би - поли». Закон перехода с макро- на микроуровень

ТРИЗ представляет собой набор методов, объединенных общей теорией. ТРИЗ помогает в организации мышления изобретателя при поиске идеи изобретения, и делает этот поиск более целенаправленным, продуктивным, способствует нахождению идеи более высокого изобретательского уровня.

Структурную схему основных механизмов классического ТРИЗ, разработанных Г. С. Альтшуллером, удобно изобразить в виде графической схемы.

Рис.1. Структурная схема основных механизмов классического ТРИЗ

ТРИЗ-методики нацелены на решение нестандартных, творческих задач. Как правило, признаки этих задач следующие:

    проблема долго и безуспешно решается (часто сотрудники фирмы выращивают "миф" о ее нерешаемости и т. п.);

    проблема содержит одно или несколько острых противоречий;

    проблема носит междисциплинарный характер;

    проблема не решается, как говорят шахматисты, "в один ход", а требует именно системы решений.

В ТРИЗ в качестве главного направления впервые стало изучение и использование в изобретательстве законов развития технических систем .

Основным инструментом ТРИЗ являлся Алгоритм решения изобретательских задач (АРИЗ). АРИЗ представляет собой ряд последовательных логических шагов, целью которых является выявление и разрешение противоречий, существующих в технической системе и препятствующих ее совершенствованию.

В ТРИЗ используется ряд инструментов для решения задач. К ним относятся:

    Таблица устранения технических противоречий, в которой противоречия представляются двумя конфликтующими параметрами. Эти параметры выбираются из списка. Для каждого сочетания параметров предлагается использовать несколько приемов устранения противоречия.Всего 40 приемов. Приемы сформулированы и классифицированы на основе статистических исследований изобретений.

    Стандарты решения задач .Сформулированы стандартные проблемные ситуации. Для разрешения этих ситуаций предлагаются типовые решения.

    Вепольный (вещественно-полевой)анализ . Определены и классифицированы возможные варианты связей между компонентами технических систем. Выявлены закономерности и сформулированы принципы их преобразования для решения задачи. На основе вепольного анализа были расширены стандарты решения задач.

    Указатель физических эффектов. Описаны наиболее распространенные для изобретательства физические эффекты и возможности их использования для решения изобретательских задач.

    Методы развития творческого воображения (РТВ). Используется ряд приемов и методов, позволяющих преодолеть инерционность мышления при решении творческих задач. Примерами таких методов являютсяМетод маленьких человечков,Оператор РВС.

Триз. Законы развития технических систем

Закон полноты частей системы. Необходимым условием принципиальной жизнеспособности технической системы является наличие и минимальная работоспособность основных частей системы.

Закон энергетической проводимости системы. Необходимым условием принципиальной жизнеспособности технической системы является сквозной проход энергии по всем частям системы.

Закон согласования ритмики частей системы. Необходимым условием принципиальной жизнеспособности технической системы является согласование ритмики (частоты колебаний, периодичности) всех частей системы.

Закон увеличения степени идеальности системы. Развитие всех систем идет в направлении увеличения степени идеальности.

Закон неравномерности развития частей системы. Развитие частей системы идет неравномерно. Чем сложнее система, тем неравномернее развитие ее частей.

Закон перехода в надсистему. Исчерпав возможности развития, система включается в надсистему в качестве одной из частей. При этом дальнейшее развитие идет на уровне надсистемы.

Закон перехода с макроуровня на микроуровень. Развитие рабочих органов системы идет сначала на макро-, а затем на микроуровне.

Закон увеличения степени вепольности. Развитие технических систем идет в направлении увеличения числа вещественно-полевых связей.

ТРИЗ. Приемы устранения противоречий

    Принцип дробления

    разделить объект на независимые части;

    выполнить объект разборным;

    увеличить степень дробления объекта.

Принцип вынесения

  • отделить от объекта "мешающую" часть ("мешающее" свойство);

    выделить единственно нужную часть (нужное свойство).

Принцип местного качества

  • перейти от однородной структуры объекта (или внешней среды, внешнего воздействия) к неоднородной;

    разные части объекта должны иметь (выполнять) различные функции;

    каждая часть объекта должна находиться в условиях, наиболее благоприятных для ее работы.

Принцип асимметрии

  • перейти от симметричной формы объекта к асимметричной;

    если объект асимметричен, увеличить степень асимметрии.

Принцип объединения

  • соединить однородные или предназначенные для смежных операций объекты;

    объединить во времени однородные или смежные операции.

Принцип универсальности

  • объект выполняет несколько разных функций, благодаря чему отпадает необходимость в других объектах.

Принцип "матрешки"

  • один объект размещен внутри другого, который, в свою очередь, находится внутри третьего и т. д.;

    один объект проходит сквозь полости в другом объекте.

Принцип антивеса

  • компенсировать вес объекта соединением с другим, обладающим подъемной силой;

    компенсировать вес объекта взаимодействием со средой (за счет аэро- и гидродинамических сил).

Принцип предварительного антидействия

  • заранее придать объекту напряжения, противоположные недопустимым или нежелательным рабочим напряжениям;

    если по условиям задачи необходимо совершить какое то действие, надо заранее совершить антидействие.

Принцип предварительного действия

  • заранее выполнить требуемое действие (полностью или хотя бы частично);

    заранее расставить объекты так, чтобы они могли вступить в действие без затраты времени на доставку и с наиболее удобного места.

Принцип "заранее подложенной подушки"

  • компенсировать относительно невысокую надежность объекта заранее подготовленными аварийными средствами.

Принцип эквипотенциальности

  • изменить условия работы так, чтобы не приходилось поднимать или опускать объект.

Принцип "наоборот"

  • вместо действия, диктуемого условиями задачи, осуществить обратное действие;

    сделать движущуюся часть объекта или внешней среды неподвижной, а неподвижную - движущейся;

    перевернуть объект "вверх ногами", вывернуть его.

Принцип сфероидальности

  • перейти от прямолинейных частей к криволинейным от плоских поверхностей к сферическим, от частей, выполненных в виде куба и параллелепипеда, к шаровым конструкциям;

    использовать ролики, шарики, спирали;

    перейти от прямолинейного движения к вращательному, использовать центробежную силу.

Принцип динамичности

  • характеристики объекта (или внешней среды) должны меняться так, чтобы быть оптимальными на каждом этапе работы;

    разделить объект на части, способные перемещаться относительно друг друга;

    если объект в целом неподвижен, сделать его подвижным, перемещающимся.

Принцип частичного или избыточного действия

  • если трудно получить 100% требуемого эффекта, надо получить "чуть меньше" или "чуть больше" - задача при этом существенно упростится.

Принцип перехода в другое измерение

  • трудности, связанные с движением (или размещением) объекта по линии, устраняются, если объект приобретает возможность перемещаться в двух измерениях (т. е. на плоскости). Соответственно задачи, связанные с движением (или размещением) объектов в одной плоскости, устраняются при переходе к пространству в трех измерениях;

    использовать многоэтажную компоновку объектов вместо одноэтажной;

    наклонить объект или положить его "на бок";

    использовать обратную сторону данной площади;

    использовать оптические потоки, падающие на соседнюю площадь или обратную сторону имеющейся площади.

Использование механических колебаний

  • привести объект в колебательное движение;

    если такое движение уже совершается, увеличить его частоту (вплоть до ультразвуковой);

    использовать резонансную частоту;

    применить вместо механических вибраторов пьезовибраторы;

    использовать ультразвуковые колебания в сочетании с электромагнитными полями.

Принцип периодического действия

  • перейти от непрерывного действия к периодическому (импульсвому);

    если действие уже осуществляется периодически, изменить периодичность;

    использовать паузы между импульсами для другого действия.

Принцип непрерывности полезного действия

  • вести работу непрерывно (все части объекта должны все время работать с полной нагрузкой);

Принцип проскока

  • вести процесс или отдельные его этапы (например, вредные или опасные) на большой скорости.

Принцип "обратить вред в пользу"

  • использовать вредные факторы (в частности, вредное воздействие среды) для получения положительного эффекта;

    устранить вредный фактор за счет сложения с другими вредными факторами;

    усилить вредный фактор до такой степени, чтобы он перестал быть вредным.

Принцип обратной связи

  • ввести обратную связь;

    если обратная связь есть, изменить ее.

Принцип "посредника"

  • использовать промежуточный объект, переносящий или передающий действие;

    на время присоединить к объекту другой (легкоудаляемый) объект.

Принцип самообслуживания

  • объект должен сам себя обслуживать, выполняя вспомогательные и ремонтные операции;

    использовать отходы (энергии, вещества).

Принцип копирования

  • вместо недоступного, сложного, дорогостоящего, неудобного или хрупкого объекта использовать его упрощенные и дешевые копии;

    заменить объект или систему объектов их оптическими копиями (изображениями). Использовать при этом изменение масштаба (увеличить или уменьшить копии);

    если используются видимые оптические копии, перейти к копиям инфракрасным и ультрафиолетовым.

Дешевая недолговечность взамен дорогой долговечности

  • заменить дорогой объект набором дешевых объектов, поступившись при этом некоторыми качествами (например, долговечностью).

Замена механической системы

  • заменить механическую схему оптической, акустической или "запаховой";

    использовать электрические, магнитные и электромагнитные поля для взаимодействия с объектом;

    перейти от неподвижных полей к движущимся, от фиксированных - к меняющимся во времени, от неструктурных - к имеющим определенную структуру;

    использовать поля в сочетании с ферромагнитными частицами.

Использование пневмоконструкций и гидроконструкций

  • вместо твердых частей объекта использовать газообразные и жидкие;

    использовать электрические, магнитные и электромагнитные поля для взаимодействия с объектом: надувные и гидронаполняемые, воздушную подушку, гидростатические и гидрореактивные.

Использование гибких оболочек и тонких пленок

  • вместо обычных конструкций использовать гибкие оболочки и тонкие пленки;

    изолировать объект от внешней среды с помощью гибких оболочек и тонких пленок.

Применение пористых материалов

  • выполнить объект пористым или использовать дополнительные пористые элементы (вставки, покрытия и т. д.);

    если объект уже выполнен пористым, предварительно заполнить поры каким-то веществом.

Принцип изменения окраски

  • изменить окраску объекта или внешней среды;

    изменить степень прозрачности объекта или внешний среды.

Принцип однородности

  • объекты, взаимодействующие с данным объектом, должны быть сделаны из того же материала (или близкого ему по свойствам).

Принцип отброса и регенерации частей

  • выполнившая свое назначение или ставшая ненужной часть объекта должна быть отброшена (растворена, испарена и т. д) или видоизменена непосредственно в ходе работы;

    расходуемые части объекта должны быть восстановлены непосредственно в ходе работы.

Изменение физико - химических параметров объекта

  • изменить агрегатное состояние объекта;

    изменить концентрацию или консистенцию;

    изменить степень гибкости;

    изменить температуру.

Применение фазовых переходов

  • использовать явления возникающие при фазовых переходах, например, изменение объема, выделение или поглощение тепла и т. д.

Применение теплового расширения

  • использовать тепловое расширение (или сжатие) материалов;

    использовать несколько материалов с разными коэффициентами теплового расширения.

Применение сильных окислителей

  • заменить обычный воздух обогащенным;

    заменить обогащенный воздух кислородом;

    использовать озонированный кислород;

    заменить озонированный кислород (или ионизированный) озоном.

Применение инертной среды

  • заменить обычную среду инертной;

    вести процесс в вакууме.

Применение композиционных материалов

  • перейти от однородных материалов к композиционным.

В технике есть хороший метод, который позволяет «по науке» изобретать и улучшать предметы от колеса до компьютера и самолета. Называется он ТРИЗ (теория решения изобретательских задач). ТРИЗ я немного изучал в МИФИ, а потом посещал курсы Александра Кудрявцева в Бауманке.

Пример в производстве

Начальное состояние системы. Предприятие работает как опытно-конструкторское производство.

Фактор воздействия. На рынке появились конкуренты, которые делают аналогичную продукцию, но быстрее и дешевле при том же качестве.

Кризис (Противоречие). Чтобы делать быстрее и дешевле, необходимо выпускать максимально стандартизованную продукцию. Но, выпуская только стандартизованную продукцию, предприятие теряет рынок, так как может производить лишь небольшое число стандартных позиций.

Разрешение кризиса происходит по следующему сценарию:

Правильная формулировка идеального конечного результата (ИКР) – предприятия производит бесконечно большой ассортимент продукции с нулевыми затратами и мгновенно;

область конфликта : стыковка продаж и производства: для продаж должен быть максимальный ассортимент, для производства — один вид продукции;

способы разрешения конфликта: переход от макро- к микроуровню: на макроуровне — бесконечное разнообразие, на микроуровне – стандартизация;

решение : максимальная стандартизация и упрощение в производстве — несколько стандартных модулей, которые могут собираться в большом числе комбинаций для клиента. В идеале конфигурирование клиент делает сам для себя, например через сайт.

Новое состояние системы. Производство небольшого числа стандартизованных модулей и конфигурирование под заказ самим же клиентом. Примеры: Тойота, Икея, Лего.

Закон №7 перехода в надсистему (моно-би-поли)

исчерпав возможности развития, система включается в надсистему в качестве одной из частей; при этом дальнейшее развитие идет уже на уровне надсистемы.

Телефон с функцией звонка — > Телефонс функцией звонка и смс -> Телефон как чать экосистемы подключенной к AppStore (iphone)

Еще пример, вхождение предприятия в цепочку поставок или холдинг и развитие на новом уровне.

одна компания — две компании — управляющая компания.

один модуль — два модуля — ERP система

Закон №8 перехода с макроуровня на микроуровень

развитие частей системы идет сначала на макро, а затем на микроуровне.

Телефон->Сотовый телефон->Чип в мозгу или в контактных линзах.

Сначала ищется общее ценностное предложение и делаются продажи, а после оптимизируется «воронка продаж» и каждый шаг воронки продаж, а так же микродвижения и клики пользоватеелй.

На заводах начинают с синхронизации между цехами. Когда этот ресурс оптимизации исчерпан, производится внутрицеховая оптимизация, далее переход на каждое рабочее место, вплоть до микродвижений операторов.

Закон №9 перехода к более управляемым ресурсам

Развитие систем идет в направлении управления все более сложными и динамичными подсистемами.

Есть знаменитая фраза Марка Андрессена — «Software is Eating the World» (софт съедает планету). Сначала управление компьютерами осуществлялось на уровне «железа» (hardware) — электронные реле, транзисторы и т.п. Далее появились низкоуровневые языки программирования типа Assembler, далее языки более высоких уровней — Fortran, C, Python. Управление не на уровне отдельных команд, а на уровне классов, модулей и библиотек. Начала оцифровываться музыка и книги. Позже компьютеры подключились в сеть. Далее к сети подключились люди, телевизоры, холодильники, микроволновки, телефоны. Начал оцифровываться интеллект, живые клетки.

Закон №10 законы самосборки

Уход от систем которые нужно детально создавать, продумывать и контролировать. Переход к «самособирающимся» системам

4 правиласамосборки:

  1. Внешний непрерывный источник энергии (информации, денег, людей, спрос)
  2. Примерное подобие элементов (блоков информации, типов людей)
  3. Наличие потенциала притяжения (людей тянет общаться друг с другом)
  4. Наличие внешнего перетряхивания (создание кризисов, прекращение финансирования, смена правил)

По такой схеме из ДНК происходит самосборка клеток. Мы все — результаты самосборки.Стартапы вырастают в крупные компании так же по законам самосборки.

Небольшие и понятные правила на микроуровне выливаются в сложное организованное поведение на макроуровне. Например, правила дорожного движения для каждого водителя выливаются в организованный поток на трассе.

Простые правила поведения муравьев выливаются в сложное поведение всего муравейника.

Создание каких-то простых законов на уровне государства (повышение/понижение налогов, % по кредитам, санкции и т.п.), меняет конфигурацию многих компаний и отраслей

Закон №11 повышение свернутости системы

Функции, которыми никто не пользуется — отмирают. Функции объединяются

Правило свертки 1. Элемент может быть свернут, если нет объекта выполняемой им функции. Стартап может быть закрыт, если не найден клиент или ценностное предложение.По этой же причине по достижению цели — система распадается.

Правило свертки 2. Элемент может быть свернут, если объект функции сам выполняет эту функцию. Агентства по туризму могут быть закрыты, так как клиенты сами ищут туры, бронируют билеты, покупают путевки и т.п.

Правило свертки 3. Элемент может быть свернут, если функцию выполняют оставшиеся элементы системы или надсистемы.

Закон №12 закон вытеснения человека

Со временем человек становится лишним звеном в любой развитой системе. Человека нет, а функции выполняются. Роботизация ручных операций. Вендинговые автоматы самовыдачи товаров и др.

С этой точки зрения, возможно зря Элон Маск пытается заселить Марс людьми путем физической транспортировки. Это долго и дорого. Скорее всего колонизация будет происходить информационным путем.