В. а


Опыт работы учителя начальных классов МОАУ «СОШ № 15 г. Орска» Винниковой Л.А.

Развитие математических способностей учащихся начальных классов в процессе решения текстовых задач.

Опыт работы учителя начальных классов МОАУ «СОШ № 15 г. Орска» Винниковой Л.А.

Составитель: Гринченко И. А., методист Орского филиала ИПКиППРО ОГПУ

Теоретическая база опыта:

  • теории развивающего обучения (Л.В. Занков, Д.Б. Эльконин)
  • психолого-педагогические теории Р. С. Немова, Б. М. Теплова, Л. С. Выготского, А. А. Леонтьева, С.Л. Рубинштейна, Б. Г. Ананьева, Н. С. Лейтеса, Ю. Д. Бабаевой, В. С. Юркевич о развитии математических способностей в процессе специальным образом организованной учебной деятельности.
  • Крутецкий В. А. Психология математических способностей школьников. М.: Издат. Институт практической психологии; Воронеж: Изд-во НПО МОДЭК, 1998. 416 с.
  • Развитие математических способностей учащихся последовательно и целенаправленно.
Все исследователи, занимавшиеся проблемой математических способностей (А. В. Бруш-линский А. В. Белошистая, В. В. Давыдов, И. В. Дубровина, З. И Калмыкова, Н. А. Менчинская, А. Н. Колмогоров, Ю. М. Колягин, В. А. Крутецкий, Д. Пойа, Б. М. Теплов, А.Я. Хинчин) при всей разновидности мнений отмечают прежде всего специфические особенности психики матема-тически способного ребёнка (а также профессионального математика), в частности гибкость, глубину, целенаправленность мышления. А. Н. Колмогоров, И. В. Дубровина своими исследова-ниями доказали, что математические способности проявляются довольно рано и требуют неп-рерывного упражнения. В. А. Крутецкий в книге «Психология математических способностей школьников» различает девять компонентов математических способностей, формирование и развитие которых происходит уже в начальных классах.

Использование материала учебника «Моя математика» Т.Е. Демидовой, С. А. Козловой, А. П. Тонких позволяет выявить и развить математические и творческие способности учащихся, сформировать устойчивый интерес к математике.

Актуальность:

В младшем школьном возрасте происходит бурное развитие интеллекта. Возможность развития способностей очень высока. Развитие математических способностей младших школьников на сегодняшний день остаётся наименее разработанной методической проблемой. Многие педагоги и психологи высказывают мнение о том, что начальная школа является «зоной повышенного риска», так как именно на этапе начального обучения в силу преимущественной ориентации учителей на усвоение знаний, умений и навыков происходит блокирование развития способностей у многих детей. Важно не упустить этот момент и найти эффективные пути развития способнос-тей детей. Несмотря на постоянное совершенствование форм и методов работы, в развитии математических способностей в процессе решения задач есть существенные пробелы. Это можно объяснить следующими причинами:

Излишняя стандартизация и алгоритмизация методов решения задач;

Недостаточное включение учащихся в творческий процесс решения задачи;

Несовершенство работы учителя по формированию умения учащихся проводить содержательный анализ задачи, выдвигать гипотезы по планированию решения, рационально определяя шаги.

Актуальность исследования проблемы развития математических способностей младших школьников объясняется:

Потребностью общества в творчески мыслящих людях;

Недостаточной степенью разработанности в практическом методическом плане;

Необходимостью обобщения и систематизации опыта прошлого и настоящего по развитию математических способностей в едином направлении.

В результате целенаправленной работы по развитию математических способностей у учащихся повышается уровень успеваемости и качества знаний, развивается интерес к предмету.

Основополагающие принципы педагогической системы.

Продвижение в изучении материала быстрыми темпами.

Ведущая роль теоретических знаний.

Обучение на высоком уровне трудности.

Работа над развитием всех учащихся.

Осознание школьниками процесса обучения.

Развитие способности и потребности самостоятельно находить решение не встречавшихся ранее учебных и внеучебных задач.

Условия возникновения и становления опыта:

Эрудиция, высокий интеллектуальный уровень учителя;

Творческий поиск методов, форм и приёмов, обеспечивающих повышение уровня математических способностей учащихся;

Умение прогнозировать положительное продвижение учащихся в процессе использования комплекса упражнений по развитию математических способностей;

Желание учащихся узнать новое в математике, участвовать в олимпиадах, конкурсах, интеллектуальных играх.

Сущностью опыта является деятельность учителя по созданию условий для активной, сознательной, творческой деятельности обучающихся; совершенствованию взаимодействия учителя и учащихся в процессе решения текстовых задач; развитию математических способностей школьников и воспитанию у них трудолюбия, работоспособности, требовательности к себе. Выявляя причины успехов и неудач учеников, учитель может определить, какие способности или неспособности влияют на деятельность учащихся и в зависимости от этого целенаправленно планировать дальнейшую работу.

Для осуществления качественной работы по развитию математических способностей применяются следующие инновационные педагогические продукты педагогической деятельности:

Факультативный курс «Нестандартные и занимательные задачи»;

Использование ИКТ технологий;

Комплекс упражнений для развития всех компонентов математических способностей, которые можно сформировать в начальных классах;

Цикл занятий по развитию способности рассуждать.

Задачи, способствующие достижению данной цели:

Постоянное стимулирование и развитие познавательного интереса обучающегося к предмету;

Активизация творческой деятельности детей;

Развитие способности и стремления к самообразованию;

Сотрудничество учителя и обучающегося в процессе обучения.

Внеурочная работа создает дополнительный стимул для творчества обучающихся, развития их математических способностей.

Новизна опыта заключается в том, что:

  • изучены специфические условия деятельности, способствующие интенсивному развитию математических способностей учащихся, найдены резервы повышения уровня математических способностей для каждого ученика;
  • учитываются индивидуальные способности каждого ребёнка в процессе обучения;
  • выявлены и описаны в полном объёме наиболее эффективные формы, методы и приёмы, направленные на развитие математических способностей учащихся в процессе решения текстовых задач;
  • предложен комплекс упражнений для развития компонентов математических способностей учащихся начальных классов;
  • разработаны требования к упражнениям, которые своим содержанием и формой стимулировали бы развитие математических способностей.
Это даёт возможность сделать доступным для учащихся усвоение новых видов задач при меньшей затрате времени и большей эффективностью. Часть задач, упражнений, некоторые проверочные работы для определения продвижения детей в развитии математических способностей разрабатывались по ходу работы с учётом индивидуальных особенностей учащихся.

Продуктивность.

Развитие математических способностей учащихся достигается при последовательной и целенаправленной работе путём разработки методов, форм и приёмов, направленных на решение текстовых задач. Такие формы работы обеспечивают повышение уровня математических способностей большинства учащихся, повышают продуктивность и творческое направление деятельности. У большинства учащихся повышается уровень математических способностей, развиваются все компоненты математических способностей, которые можно сформировать в начальных классах. Учащиеся показывают устойчивый интерес и положительное отношение к предмету, высокий уровень знаний по математике, успешно выполняют задания олимпиадного и творческого характера.

Трудоёмкость.

Трудоёмкость опыта определяется его переосмысливанием с позиции творческой самореализации личности ребенка в учебно-познавательной деятельности, отбором оптимальных методов и приёмов, форм, средств организации учебного процесса с учетом индивидуально-творческих возможностей учащихся.

Возможность внедрения.

Опыт решает как узко-методические, так и общепедагогические задачи. Опыт интересен учителям начальных и старших классов, студентам ВУЗов, родителям и может использоваться в любой деятельности, где требуется оригинальность, нешаблонность мышления.

Система работы учителя.

Система работы педагога состоит из следующих компонентов:

1. Диагностика исходного уровня развития математических способностей учащихся.

2. Прогнозирование положительных результатов деятельности учащихся.

3. Реализация комплекса упражнений по развитию математических способностей в учебном процессе в рамках программы « Школа 2100».

4. Создание условий для включения в деятельность каждого ученика.

5. Выполнение и составление учениками и учителем заданий олимпиадного и творческого характера.

Система работы, помогающая выявить детей, интересующихся математикой, научить их творчески мыслить и углублять полученные знания включает:

Предварительную диагностику по определению уровня математических способностей учащихся, составление долгосрочных и краткосрочных прогнозов на весь курс обучения;

Систему уроков математики;

Многообразные формы внеклассной работы;

Индивидуальную работу со способными к математике школьниками;

Самостоятельную работу самого школьника;

Участие в олимпиадах, конкурсах, турнирах.

Результативность работы.

При 100 % успеваемости стабильно высокое качество знаний по математике. Положительная динамика уровня математических способностей учащихся. Высокая учебная мотивация и мо-тивация самореализации при выполнении научно-исследовательских работ по математике. Увеличение числа участников олимпиад и конкурсов различных уровней. Более глубокое осознание и усвоение программного материала на уровне применения знаний, умений, навыков в новых условиях; повышение интереса к предмету. Повышение познавательной активности школьников в урочной и внеурочной деятельности.

Ведущая педагогическая идея опыта заключается в совершенствовании процесса обучения школьников в процессе урочной и внеклассной работы по математике для развития познавательного интереса, логического мышления, формирования творческой активности учащихся.

Перспективность опыта объясняется его практической значимостью для повышения творческой самореализации детей в учебно-познавательной деятельности, для развития и реализации их потенциальных возможностей.

Технология опыта.

Математические способности проявляются в том, с какой скоростью, как глубоко и насколько прочно люди усваивают математический материал. Эти характеристики легче всего обнаруживаются в ходе решения задач.

Технология включает сочетание групповых, индивидуальных и коллективных форм учебной деятельности учащихся в процессе решения задач и основана на использовании комплекса упражнений для развития математических способностей учащихся. Способности развиваются в деятельности. Процесс их развития может идти стихийно, но лучше, если они развиваются в организованном процессе обучения. Создаются условия, наиболее благоприятные для целенаправленного развития способностей. На первом этапе развитие способностей характеризуется в большей степени подражательностью (репродуктивностью). Постепенно появляются элементы творчества, оригинальности и чем способнее человек, тем более ярко они выражены.

Формирование и развитие компонентов математических способностей происходит уже в начальных классах. Чем же характеризуется умственная деятельность способных к математике школьников? Способные учащиеся, воспринимая математическую задачу, систематизируют данные в задаче величины, отношения между ними. Создаётся ясный целостно-расчленённый образ задачи. Иначе говоря, для способных учащихся характерно формализованное восприятие математического материала (математических объектов, отношений и действий), связанное с быстрым схватыванием в конкретной задаче их формальной структуры. Ученики со средними способностями при восприятии задачи нового типа определяют, как правило, её отдельные элементы. Некоторым учащимся очень трудно даётся осмысление связей между компонентами задачи, они с трудом схватывают совокупность многообразных зависимостей, составляющих существо задачи. Для развития способности к формализованному восприятию математического материала учащимся предлагаются упражнения [Приложение 1. Серия I]:

1) Задачи с несформулированным вопросом;

2) Задачи с неполным составом условия;

3) Задачи с избыточным составом условия;

4) Работа по классификации задач;

5) Составление задач.

Мышление способных учеников в процессе математической деятельности характеризуется быстрым и широким обобщением (каждая конкретная задача решается как типовая). У наиболее способных учащихся такое обобщение наступает сразу, путём анализа одной отдельно взятой задачи в ряду сходных. Способные ученики без затруднений переходят к решению задач в буквенной форме.

Развитие способности к обобщению достигается путём предъявления специальных упражнений [Приложение 1. Серия II.]:

1) Решение задач одного типа; 2) Решение задач разного типа;

3)Решение задач с постепенной трансфармацией из конкретного в абстрактный план; 4) Составление уравнения по условию задачи.

Мышление способных учеников характеризуется тенденцией мыслить свёрнутыми умозаключениями. У таких учеников свёртывание процесса рассуждения наблюдается после решения первой задачи и иногда после предъявления задачи сразу выдаётся результат. Время решения задачи определяляется лишь временем, потраченным на вычисления. В основе свёрнутой структуры всегда находится хорошо логически обоснованный процесс рассуждения. Средние ученики обобщают материал после многократных упражнений, поэтому и свёртывание процесса рассуждения у них наблюдается после решения нескольких однотипных задач. У малоспособных учащихся свёртывание может начинаться лишь после большого числа упражнений. Мышление способных учеников отличается большой подвижностью мыслительных процессов, многообразием аспектов в подходе к решению задач, лёгким и свободным переключением от одной умственной операции к другой, с прямого на обратный ход мысли. Для развития гибкости мышления предлагаются упражнения [Приложение 1. Серия III.]

1) Задачи, имеющие несколько способов решения.

2) Решение и составление задач, обратных данной.

3) Решение задач обратным ходом.

4) Решение задач с альтернативным условием.

5) Решение задач с неопределёнными данными.

Для способных учащихся характерно стремлением к ясности, простоте, рациональности, экономности (изяществу) решения.

Математическая память способных учащихся проявляется в запоминании типов задач, способов их решения, конкретных данных. Способные ученики отличаются хорошо развитыми пространственными представлениями. Однако при решении ряда задач они могут обходиться без опоры на наглядные образы. В каком-то смысле логичность заменяет им «образность», они не испытывают трудностей при оперировании абстрактными схемами. Выполняя учебные задания, учащиеся вместе с тем развивают свою мыслительную деятельность. Так, решая математические задачи, школьник учится анализу, синтезу, сравнению, абстрагированию и обобщению, которые являются основными мыслительными операциями. Поэтому для формирования способностей в учебной деятельности необходимо создавать определённые условия:

А) положительные мотивы учения;

Б) интерес учащихся к предмету;

В) творческая активность;

Г) положительный микроклимат в коллективе;

Д) сильные эмоции;

Е) предоставление свободы выбора действий, вариативность работы.

Учителю удобнее опираться на некоторые чисто процессуальные характеристики деятельности способных детей. Большинству детей с математическими способностями свойственны:

  • Повышенная склонность к умственным действиям и положительный эмоциональный отклик на любую умственную нагрузку.
  • Постоянная потребность в возобновлении и усложнении умственной нагрузки, что ведёт за собой постоянное повышение уровня достижений.
  • Стремление к самостоятельному выбору дел и планированию своей деятельности.
  • Повышенная работоспособность. Длительные интеллектуальные нагрузки не утомляют этого ребёнка, наоборот, он чувствует себя хорошо в ситуации наличия проблемы.
Развитие математических способностей учащихся, занимающихся по программе «Школа 2100» и учебникам «Моя математика» авторов: Т. Е. Демидовой, С. А. Козловой, А. П. Тонких проходит на каждом уроке математики и во внеурочной деятельности. Эффективное развитие способностей невозможно без использования в учебном процессе задач на сообразительность, задач-шуток, математических ребусов. Учащиеся учатся решать логические задачи с истинными и ложными высказываниями, составлять алгоритмы к задачам на переливание, взвешивание, использовать таблицы и графы для решения задач.

В поисках путей более эффективного использования структуры уроков для развития мате-матических способностей особую значимость приобретает форма организации учебной деятель-ности учащихся на уроке. В своей практике мы используем фронтальную, индивидуальную и групповую работу.

При фронтальной форме работы учащиеся выполняют общую для всех деятельность, всем классом сравнивают и обобщают её результаты. В силу своих реальных возможностей ученики могут делать обобщения и выводы на разном уровне глубины. Фронтальная форма организации обучения реализовывается нами в виде проблемного, информационного и объяснительно–иллюстративного изложения и сопровождается репродуктивными и творческими заданиями. Все текстовые логические задачи, решение которых нужно найти с помощью цепочки рассуждений, предложенные в учебнике 2 класса, в первом полугодии разбираются фронтально, так как их самостоятельное решение доступно не всем детям этого возраста. Затем эти задачи предлагаются для самостоятельного решения учащимся с высоким уровнем математических способностей. В третьем классе логические задачи даются сначала для самостоятельного решения всем учащимся, а потом анализируются предложенные варианты.

Применение полученных знаний в изменённых ситуациях лучше всего организовать с ис-пользованием индивидуальной работы. Каждый ученик получает для самостоятельного выполне-ния задание, специально для него подобранное в соответствии с подготовкой и способностями. Существует два вида индивидуальных форм организации выполнения заданий: индивидуальная и индивидуализированная. Первая характеризуется тем, что деятельность ученика по выполнению общих для всего класса заданий осуществляется без контакта с другими школьниками, но в едином для всех темпе, вторая позволяет с помощью дифференцированных индивидуальных за-даний создать оптимальные условия для реализации способностей каждого ученика. В своей работе мы используем дифференциацию учебных заданий по уровню творчества, трудности, объёму. При дифференциации по уровню творчества работа организуется следующим образом: учащимся с низким уровнем математических способностей (1 группа) предлагаются репродуктивные задания (работа по образцу, выполнение тренировочных упражнений), а ученикам со средним (2 группа) и высоким уровнем (3 группа) – творческие задания.

  • (2 класс. Урок № 36. Задача № 7. В гонке парусных кораблей участвовало 36 яхт. Сколько яхт дошло до финиша, если 2 яхты вернулись к старту из-за поломки, а 11 – из-за шторма?
Задание для 1-й группы. Решите задачу. Подумайте, можно ли её решить другим способом.

Задание для 2-й группы. Решите задачу двумя способами. Придумайте задачу с другим сюжетом, чтобы решение при этом не изменилось.

Задание для 3-й группы. Решите задачу тремя способами. Составьте задачу обратную к данной и решите её.

Можно предложить продуктивные задания всем ученикам, но при этом детям с низким уровнем способностей даются задания с элементами творчества, в которых нужно применить знания в изменённой ситуации, а остальным – творческие задания на применение знаний в новой ситуации.

  • (2 класс. Урок № 45. Задача № 5. В трёх клетках 75 волнистых попугайчиков. В первой клетке 21 попугайчик, во второй – 32 попугайчика. Сколько попугайчиков в третьей клетке?
Задание для 1-й группы. Решите задачу двумя способами.

Задание для 2-й группы. Решите задачу двумя способами. Придумайте задачу с другим сюжетом, но чтобы её решение при этом не изменилось.

Задание для 3-й группы. Решите задачу тремя способами. Измените вопрос и условие задачи так, чтобы данные об общем количестве попугайчиков стали лишними.

Дифференциация учебных заданий по уровню трудности (трудность задачи представляет совокупность многих субъективных факторов, зависящих от особенностей личности, например, таких как интеллектуальные возможности, математические способности, степень новизны и т. д.) предполагает три типа задач:

1. Задачи, решение которых состоит в стереотипном воспроизведении заученных действий. Степень трудности задач связана с тем, насколько сложным является навык воспроизведения действий и насколько прочно он освоен.

2. Задачи, решение которых требует некоторой модификации заученных действий в изменившихся условиях. Степень трудности связана с количеством и разнородностью элементов, которые надо координировать наряду с описанными выше особенностями данных.

3. Задачи, решение которых требует поиска новых, ещё неизвестных способов действий. Задачи требуют творческой активности, эвристического поиска новых, неизвестных схем действий или необычной комбинации известных.

Дифференциация по объёму учебного материала предполагает, что всем учащимся даётся некоторое количество однотипных задач. При этом определяется обязательный объём, а за каждое дополнительно выполненное задание, к примеру, начисляются баллы. Могут быть предложены задания творческого характера по составлению однотипных объектов и требуется составить максимальное их количество за определённый период времени.

  • Кто больше составит задач с различным содержанием, решением каждой из которых будет числовое выражение: (54 + 18) : 2
В качестве дополнительных предлагаются творческие или более трудные задания, а также задания, не связанные по содержанию с основным – задания на смекалку, нестандартные задачи, упражнения игрового характера.

При самостоятельном решении задач индивидуальная работа тоже эффективна. Степень самостоятельности такой работы разная. Сначала учащиеся выполняют задания с предварительным и фронтальным разбором, подражая образцу, или по подробным инструкционным карточкам. [Приложение 2]. По мере овладения учебными умениями степень самостоятельности возрастает: ученики (особенно со средним и высоким уровнем математических способностей) работают по общим, не детализированным заданиям, без непосредственного вмешательства учителя. Для индивидуальной работы предлагаются разработанные нами листы заданий по темам, сроки выполнения которых определяются в соответствии с желаниями и возможностями ученика [Приложение 3]. Для учащихся с низким уровнем математических способностей составляется система заданий, которая содержит: образцы решений и задачи, подлежащие решению на основе изученного образца, различные алгоритмические предписания; теоретические сведения, а также всевозможные требования сравнивать, сопоставлять, классифицировать, обобщать. [Приложение 4, фрагмент урока № 1] Такая организация учебной работы даёт возможность каждому ученику в силу своих способностей углублять и закреплять полученные знания. Индивидуальная форма работы несколько ограничивает общение учащихся, стремление передавать знания другим, участие в коллективных достижениях, поэтому мы используем групповую форму организации учебной деятельности. [Приложение 4. Фрагмент урока № 2]. Задания в группе выполняются таким способом, при котором учитывается и оценивается индивидуальный вклад каждого ребёнка. Величина групп от 2 до 4 человек. Состав группы не постоянный. Он меняется от содержания и характера работы. В состав группы входят учащиеся с разным уровнем математических способностей. Часто мы на внеклассных занятиях готовим учеников с низким уровнем математических способностей к роли кон-сультантов на уроке. Выполнение этой роли является достаточным, чтобы ребёнок почувствовал себя лучшим, свою значимость. Групповая форма работы делает явными способности каждого ученика. В сочетании с другими формами обучения – фронтальной и индивидуальной - групповая форма ор-ганизации работы учащихся приносит положительные результаты.

На уроках математики и факультативных курсах широко используются компьютерные тех-нологии. Они могут быть включены в любой этап занятия – во время индивидуальной работы, при введении новых знаний, их обобщении, закреплении, для контроля ЗУНов. Например, при решении задач на получение некоторого количества жидкости из большого или бесконечного по объё-му сосуда, водоёма или источника с помощью двух пустых сосудов задавая различные объёмы сосудов, различные требуемые количества жидкости, можно получить большой набор задач разного уровня сложности для их героя «Переливашки». Объём жидкости в условном сосуде А будет соответствовать объёму слитой жидкости, объёмы Б и В – заданным объёмам по условию задачи. Действие, обозначенное одной буквой, например, Б, означает наполнение сосуда из источника.

Задача. Для разведения картофельного пюре быстрого приготовления «Зелёный великан» требуется 1 л воды. Как, имея два сосуда ёмкостью 5 и 9 литров, налить 1 литр воды из водопроводного крана?

Дети разными вариантами ищут решение задачи. Приходят к выводу, что задача решается за 4 хода.




Действие

А

Б (9л)

В (5л)

0

0

0

1

В

0

0

5

2

В-Б

0

5

0

3

В

0

5

5

4

В-Б

0

9

1

Для развития математических способностей нами используются широкие возможности вспомогательных форм организации учебной работы. Это факультативные занятия по курсу «Нес-тандартные и занимательные задачи», домашняя самостоятельная работа, индивидуальные заня-тия по развитию математических способностей с учащимися низкого и высокого уровня их разви-тия. На факультативных занятиях часть времени отводилась обучению решению логических задач по методике А. З. Зака. Занятия проводились 1 раз в неделю, продолжительность занятия 20 минут и способствовали повышению уровня такого компонента математических способностей, как способности к правильному логическому рассуждению.

На занятиях факультативного курса «Нестандартные и занимательные задачи» проводится коллективное обсуждение решения задачи нового вида. Благодаря этому методу у детей форми-руется такое важное качество деятельности, как осознание собственных действий, самоконтроль, возможность дать отчёт о выполняемых шагах при решении задач. Основное время на занятиях занимает самостоятельное решение задач учащимися с последующей коллективной проверкой решения. На занятиях учащиеся решают нестандартные задачи, которые разделены на серии.

Для учащихся с низким уровнем развития математических способностей проводится индивидуальная работа во внеурочное время. Работа ведётся в форме диалога, карточек-инструкций. От учащихся при такой форме требуется проговаривание вслух всех способов решения, поисков правильного ответа.

Для учащихся с высоким уровнем способностей во внеурочное время проводятся консультации для удовлетворения потребностей в углубленном изучении вопросов курса математики. Занятия по своей форме организации носят характер собеседования, консультации или самостоятельного выполнения учениками заданий под руководством учителя.

Для развития математических способностей используются следующие формы внеурочной работы: олимпиады, конкурсы, интеллектуальные игры, тематические месячники по математике. Так во время тематического месячника «Юный математик», проводимого в начальной школе в ноябре 2008 года учащиеся класса участвовали в таких мероприятиях: выпуск математических газет; конкурс «Занимательные задачи»; выставка творческих работ математической тематики; встреча с доцентом кафедры СП и ППНО, защита проектов; олимпиада по математике.

Особую роль в развитии детей занимают математические олимпиады. Это состязание, которое позволяет способным учащимся почувствовать себя настоящими математиками. Именно в этот период происходят первые самостоятельные открытия ребёнка.

Проводятся внеклассные мероприятия математической тематики: «КВН 2+3», Интеллектуальная игра «Выбор наследника», Интеллектуальный марафон», «Ма-тематический светофор», «Следопыты» [Приложение 5], игра «Весёлый поезд» и другие.

Математические способности можно выявить и оценить на основе того, как ребёнок решает определённые задачи. Само решение этих задач зависит не только от способностей, но и от мотивации, от имеющихся знаний, умений и навыков. Составление прогноза результатов развития требует знания именно способностей. Результаты наблюдений позволяют сделать вывод, что перспективы развития способностей имеются у всех детей. Главное, на что должно быть обращено внимание при улучшении способностей детей, - это создание оптимальных условий для их развития.

Отслеживание результатов исследовательской деятельности:

С целью практического обоснования выводов, полученных в ходе теоретического изучения проблемы: каковы наиболее эффективные формы и методы, направленные на развитие математических способностей школьников в процессе решения математических задач было проведено исследование. В эксперименте приняли участие два класса: экспериментальный 2 (4) «Б», контрольный – 2 (4) «В» общеобразовательной школы № 15. Работа велась с сентября 2006 года по январь 2009 года и предусматривала 4 этапа.

Этапы экспериментальной деятельности

I – Подготовительный (сентябрь 2006 г.). Цель: определение уровня математических способнос-тей по результатам наблюдений.

II – Констатирующая серия эксперимента (октябрь 2006 г.) Цель: определение уровня сформированности математических способностей.

III – Формирующий эксперимент (ноябрь 2006 – декабрь 2008 г.) Цель: создание необходимых условий для развития математических способностей.

IV – Контрольный эксперимент (январь 2009 г.) Цель: определение эффективности форм и методов, способствующих развитию математических способностей.

На подготовительном этапе проведены наблюдения за учащимися контрольного – 2 «Б» и экспериментального 2 «В» классов. Наблюдения проводились как в процессе изучения нового материала, так и при решении задач. Для наблюдений были выделены те признаки математических способностей, которые наиболее ярко прявляются у младших школьников:

1) относительно быстрое и успешное овладение математическими знаниями, умениями и навыками;

2) способность к последовательному правильному логическому рассуждению;

3) находчивость и сообразительность при изучении математики;

4) гибкость мышления;

5) способность к оперированию числовой и знаковой символикой;

6) пониженная утомляемость при занятиях математикой;

7) способность сокращать процесс рассуждения, мыслить свернутыми структурами;

8) способность переходить с прямого на обратный ход мысли;

9) развитость образно–геометрического мышления и пространственных представлений.

В октябре учителя заполнили таблицу математических способностей школьников, в которой оценили в баллах каждое из перечисленных качеств (0-низкий уровень, 1-средний уровень, 2-высокий уровень).

На втором этапе в экспериментальном и контрольном классах проведена диагностика развития математических способностей.

Для этого использовался тест «Решение задач»:

1. Составь из данных простых задач составные. Реши одну составную задачу разными способами, подчеркни рациональный.

2. Прочитай задачу. Прочитай вопросы и выражения. Соедини каждый вопрос с нужным выражением.

В
а + 18
классе 18 мальчиков и а девочек.

3. Реши задачу.

В своём письме родителям Дядя Фёдор написал, что его дом, дом почтальона Печкина и колодец находятся на одной стороне улицы. От дома Дяди Фёдора до дома почтальона Печкина 90 метров, а от колодца до дома Дяди Фёдора 20 метров. Какое расстояние от колодца до дома почтальона Печкина?

С помощью теста проверялись те же компоненты структуры математических способностей, что и при наблюдении.

Цель: установить уровень математических способностей.

Оборудование: карточка ученика (лист).

Таблица 2

Тест проверяет умения и математические способности:


Задачи


Умения, необходимые для решения задачи.

Способности, проявляющиеся в математической деятельности.

№ 1

Умение отличать задачу от других текстов.

Способность к формализации математического материала.

№ 1, 2, 3, 4

Умение записывать решение задачи, производить вычисления.

Способность к оперированию числовой и знаковой символикой.

№ 2, 3

Умение записывать решение задачи выражением. Умение решать задачу разными способами.

Гибкость мышления, способность сокращать процесс рассуждения.

№ 4

Умение выполнять построение гео-метрических фигур.

Развитость образно–геометри-ческого мышления и прост-ранственных представлений.

На данном этапе изучены математические способности и определены следующие уровни:

Низкий уровень: математические способности проявляются в общей, всем присущей потребности.

Средний уровень: способности появляются в сходных условиях (по образцу).

Высокий уровень: творческое проявление математических способностей в новых, неожиданных ситуациях.

Качественный анализ теста показал основные причины затруднения выполнения теста. Среди них: а) отсутствие конкретных знаний в решении задач (не могут определить, во сколько действий решается задача, не могут записать решение задачи выражением (во 2 «Б» (экспериментальном) классе 4 человека - 15%, во 2 «В» классе - 3 человека - 12%) б) недостаточное формирование вычислительных навыков (во 2 «Б» классе 7 человек – 27%, во 2 «В» классе 8 человек – 31%.

Развитие математических способностей учащихся обеспечивается, в первую очередь, развитием математического стиля мышления. Для определения различий в развитии у детей способности рассуждать было проведено групповое занятие на материале диагностического задания «разное-одинаковое» по методике А.З. Зака. Выявлены следующие уровни способности к рассуждению:

Высокий уровень – решены задачи № 1-10 (содержат 3-5 персонажей)

Средний уровень – решены задачи № 1-8 (содержат 3-4 персонажа)

Низкий уровень – решены задачи № 1 - 4 (содержат 3 персонажа)

В эксперименте применялись такие методы работы: объяснительно-иллюстративный, репродуктивный, эвристический, проблемного изложения, исследовательский метод. В настоящем научном творчестве постановка проблемы идёт через проблемную ситуацию. Мы стремились к тому, чтобы ученик самостоятельно научился видеть проблему, формулировать её, исследовать возможности и способы её решения. Исследовательский метод характеризуется самым высоким уровнем познавательной самостоятельности учащихся. На уроках мы организовывали самос-тоятельную работу учащихся, давая им проблемные познавательные задачи и задания, имеющие практический характер.

ФРАГМЕНТ УРОКА.

Тема « Деление суммы на число» (3 класс, урок №17)

Цель: Формировать представления о возможности использования распределительного свойства деления относительно сложения для рационализации вычислений при решении задач.

I. Актуализация знаний.

II. «Открытие нового знания». Совершается на основе побуждающего диалога, при одновременном выдвижении гипотез.

Учащиеся читают текст задачи, рассматривают рисунки. Учитель задаёт вопросы:

Что интересного заметили?

Что вас удивило?

Дети осознают и формулируют проблему, предлагают возможности и способы её решения.


Учитель

(использует побуждающий диалог)


Ученики

(формулируют тему урока)


Сейчас вы разобьётесь на группы и будете решать задачу № 1.

Способ решения запишите.

Подходит к каждой группе:

Какие ещё есть гипотезы? С чего нужно начать? (Побуждение к выдвижению гипотез).


Разбиваются на группы, начинают работу.

Закончив работу, группы вывешивают на доску и озвучивают гипотезы:

4 + 6: 2 = 5 (ц.)- ошибочная гипотеза

(4 + 6) : 3 = 5 (ц.) - решающие

4: 2 + 6: 2= 5 (ц.) гипотезы

На основе анализа рисунков и текста происходит « открытие алгоритма деления суммы на число. Учащиеся объясняют свои решения и сравнивают их с решениями мальчиков. Очевидно, что решение Дениса свелось к тому, что он сначала собрал всех цыплят вместе (нашёл сумму заданных величин), а затем рассадил их в две коробки (разделил поровну). Решение Костика свелось к тому, что

Он разделил цыплят таким образом, чтобы в каждую коробку попало поровну

Чёрных и жёлтых цыплят (разделил цыплят по цвету).

Работа с текстом со знаком?

Цель работы: первичная рефлексия по поводу обнаруженного свойства действий над числами; первичное формулирование этого свойства.

Сравните свой вывод с правилом в учебнике.

Учащиеся предлагают заменить числа буквами и пользоваться для решения подобных задач формулой.

Подтверждение своих гипотез и окончательное формулирование алгоритма деления суммы на число.

III. Первичное закрепление.

Фронтальная работа. 1. Задание № 2, с. 44 2. Задание № 3, с. 45.

Рассматриваем 3 способа решения: 12: 3 + 9: 3; 9: 3 + 12: 3; (12 + 9) : 3

IV. Самостоятельная работа в парах. Задание № 4, с. 45. После проверки решения обязательно рассматриваются и сопоставляются все способы решения.

В ходе эксперимента мы определили наиболее эффективные формы работы, направленные на развитие математических способностей:

  • фронтальная, индивидуальная и групповая работа
  • дифференциация учебных заданий по уровню творчества, трудности, объёму
Для развития математических способностей использованы широкие возможности вспомогатель-

Ных форм учебной работы:

  • факультативные занятия по курсу «Нестандартные и занимательные задачи»
  • домашняя самостоятельная работа
  • индивидуальные занятия
Были использованы следующие формы внеучебной работы:
  • олимпиады
  • конкурсы
  • интеллектуальные игры
  • тематические месячники по математике
  • выпуск математических газет
  • защита проектов
  • встречи с известными математиками
  • открытый чемпионат по решению задач
  • заочная семейная олимпиада
Такие формы работы обеспечивают повышение уровня математических способностей большинства учащихся, повышают продуктивность и творческое направление деятельности.

Целесообразность таких занятий заключается в том, что они способствуют развитию всех компонентов математических способностей, которые можно сформировать в начальных классах.

Анализ показателей развития математических способностей учащихся контрольного и экспериментального класса:

Таблица 3


Этапы экспери-Уровень мента

Математичес-

Ких способностей


Констатирующий эксперимент

Контрольный эксперимент

2 «Б»

2 «В»

4 «Б»

4 «В»

Высокий

4 ч. (15%)

3 ч. (12%)

11 ч. (43%)

6 ч. (22%)

Средний

14 ч. (54%)

14 ч. (54%)

10 ч. (38%)

13 ч. (48%)

Низкий

8 ч. (31%)

9 ч. (34%)

5 ч. (19%)

8 ч. (30%)

Как видно из таблицы, в классе где проводились экспериментальные занятия произошёл существенный рост показателей математических способностей по сравнению с контрольным классом. У восьми учащихся повысился уровень математических способностей. В 2, 7 раза повысилось число учеников с высоким уровнем математических способностей, причём у одного человека с низкого до высокого. В контрольном классе за этот же период сдвиг в развитии математических способностей оказался менее значительным. Повысился он у шести учеников. В 2 раза повысилось число учеников с высоким уровнем математических способностей. Количество учащихся с высоким уровнем математических способностей в экспериментальном классе на конец эксперимента составило 43 %, с низким уровнем - 19 %, в контрольном классе - 22% и 30% соответственно. Количество учащихся, имеющих отличные оценки по математике в 4 «Б» за период эксперимента возросло в 2 раза и составило на конечном этапе 12 человек (46%), в контрольном классе количество учащихся, имеющих отличные оценки по математике составило 6 человек (23%).

Результаты констатирующего и контрольного этапа эксперимента даны в Приложении № 6.

Сравнение результатов контрольных работ, качества обучения по математике позволяют сделать вывод о том, что с повышением уровня математических способностей возрастает успешность в овладении математикой. Результаты олимпиад показывают, что учащиеся с высоким уровнем математических способностей подтверждают свой уровень.

Таблица 4

Результаты олимпиад:


класс место

2 «Б»

2 «В»

3 «Б»

3 «В»

4 «Б»

4 «В»

I

1ч.

1ч.

2ч.

1ч.

2 ч.

-

II

-

-

1ч.

-

1ч.

-

III

1ч.

1ч.

1ч.

1ч.

3 ч.

1ч.

Количество учащихся, занявших призовые места в олимпиаде увеличилось в 3 раза.

В конце эксперимента (декабрь 2007 г.) показатель качества знаний по математике составил в экспериментальном классе 84,6%, а в контрольном 77% (экспериментальный класс - 4«Б» (2«Б»), контрольный - 4 «В» (2 «В»).

Анализируя проделанную работу можно сделать ряд выводов:

1. Занятия по развитию математических способностей в процессе решения текс-товых задач на уроках математики в экпериментальном классе были достаточно продуктивны. Нам удалось достичь основной цели данного исследования – на основе теоретического и опытно-экспериментального исследования определить наиболее эффективные формы и методы работы, способствующие развитию математических способностей младших школьников при решении текстовых задач.

2. Анализ учебного материала Т. Е. Демидовой, С. А. Козловой, А. П. Тонких по программе «Школа 2100», предшествующий практической части работы, позволил структурировать отобранный материал наиболее логичным и приемлемым способом, в соответствии с целями исследования.

Результатом проведённой работы является несколько методических рекомендаций по развитию математических способностей:

1. Формирование навыков в решении задач необходимо начинать на основе учёта математических способностей учащихся.

2. Учитывать индивидуальные особенности школьника, дифференциацию математических способностей у каждого из них, используя эффективные формы, методы и приёмы.

3. В целях совершенствования математических способностей целесообразна дальнейшая разработка эффективных форм, методов и приёмов в процессе решения математических задач.

3. Систематически использовать на уроках задачи, способствующие формированию и развитию компонентов математических способностей.

4. Осуществляя целенаправленное обучение школьников решению задач с помощью специально подобранных упражнений, приёмов, учить их наблюдать, пользоваться аналогией, индукцией, сравнениями и делать выводы.

5. Целесообразно использовать на уроках задачи на сообразительность, задач-шуток, математических ребусов.

6. Осуществлять целенаправленную помощь учащимся с разным уровнем математических способностей.

7. При работе с группами учащихся необходимо обеспечивать мобильность этих групп.

Таким образом, поведённое нами исследование, позволяет утверждать, что работа над развитием математических способностей в процессе решения текстовых задач дело важное и необходимое. Поиск новых путей по развитию математических способностей является одной из неотложных задач современной психологии и педагогики.

Проведённое нами исследование имеет определённое практическое значение.

В ходе опытно-экспериментальной работы по результатам наблюдений и анализу полученных данных можно сделать вывод о том, что скорость и успешность развития математических способностей не зависит от скорости и качества усвоения программных знаний, умений и навыков. Нам удалось достичь основной цели данного исследования – определить наиболее эффектив-ные формы и методы, способствующие развитию математических способностей учащихся в процессе решения текстовых задач.

Как показывает анализ исследовательской деятельности, развитие математических способностей детей развивается более интенсивно, так как:

А) создано соответствующее методическое обеспечение (таблицы, инструкционные карточки и листы заданий для учащихся с разным уровнем математических способностей, пакет программированного обеспечения, серии задач и упражнений для развития определённых компонентов математических способностей;

Б) создана программа факультативного курса « Нестандартные и занимательные задачи», которая предусматривает реализацию развития математических способностей учащихся;

В) разработан диагностический материал, который позволяет своевременно определять уровень развития математических способностей и корректировать организацию учебной деятельности;

Г) разработана система развития математических способностей (согласно плану формирующего эксперимента).

Необходимость использования комплекса упражнений для развития математических способностей определяется на основе выявленных противоречий:

Между необходимостью использования заданий разных уровней сложности на уроках математики и отсутствием их в обучении; - между необходимостью развития математических способностей у детей и реальными условиями их развития; - между высокими требованиями к задачам формирования творческой личности учащихся и слабым развитием математических способностей школьников; - между признанием приоритета введения системы форм и методов работы для развития математических способностей и недостаточным уровнем разработки путей реализации этого подхода.

Основой для исследования является выбор, изучение, реализация наиболее эффективных форм, методов работы в развитии математических способностей.

В данную книгу избранных трудов видного ученого вошли его основные исследования по природе и структуре математических способностей школьников. Книга предназначена для психологов, педагогов и студентов, готовящихся к психолого-педагогической деятельности.

В.А. Крутецкий и его книга о математических способностях школьников

РАЗДЕЛ I.Состояние проблемы и задачи исследования

Глава I. Исследование математических способностей в зарубежной психологии

Глава II. Проблема математических способностей в русской дореволюционной и советской психологической литературе

Глава III. Постановка проблемы и задачи исследования

§ 1. Основные понятия

§ 2. Проблема и задачи исследования

РАЗДЕЛ II. Методика исследования и его организация

Глава I. Общая методика и организация исследования

Глава II.Гипотеза компонентов математических способностей как основа экспериментального исследования

Глава III. Система экспериментальных задач по исследованию математических способностей школьников

Глава IV. Организация экспериментального исследования

РАЗДЕЛ III. Анализ структуры математических способностей школьников

Глава I. Анализ неэкспериментальных материалов о компонентах структуры математических способностей школьников

Глава II.Анализ индивидуальных случаев математической одаренности детей

Глава III. Особенности получения информации о задаче (первичной ориентировки в ней) способными к математике школьниками

Глава IV. Особенности переработки полученной информации в процессе решения задач способными к математике школьниками

§ 1. Способность к обобщению математических объектов, отношений и действий

§ 2. Способность к свертыванию процесса математического рассуждения и системы соответствующих действий

§ 3. Гибкость мыслительных процессов

§ 4. Стремление к ясности, простоте и экономности («изяществу») решения

§ 5. Обратимость мыслительного процесса в математическом рассуждении (способность к быстрому и свободному переключению с прямого на обратный ход мысли)

Глава V. Особенности хранения математической информации (математического материала) способными к математике школьниками

Глава VI. Некоторые специальные вопросы структуры математических способностей школьников

§ 1. Математическая направленность ума

§ 2. Проблема внезапного решения («озарения», инсайта) в свете анализа компонентов математических способностей

§ 3. Малая утомляемость способных школьников в процессе длительной и напряженной математической деятельности

Глава VII. Типовые и возрастные различия в характеристиках компонентов математических способностей

§ 1. Типы структур (математических складов ума)

§ 2. Возрастная динамика развития структуры математических способностей

Глава VIII. Общие вопросы структуры математических способностей

§1. Общая схема структуры. Взаимоотношение компонентов

§ 2. Специфичность математических способностей

§ 3. Некоторые соображения о природе математических способностей

Основные труды В.А. Крутецкого

Литература

Предисловие

Вадим Андреевич Крутецкий был одним из крупных известных специалистов в области возрастной и педагогической психологии, в течение многих лет он плодотворно разрабатывал проблемы психологии личности и психологии способностей. Его перу принадлежит более 130 научных публикаций. Среди книг, им написанных, — «Психология подростков» (1959, 1965), «Очерки психологии старшего школьника» (1963) (обе книги в соавторстве с Н.С. Лукиным), «Основы педагогической психологии» (1972), «Психология обучения и воспитания школьников» (1976). В.А. Крутецкий был также одним из авторов учебников психологии для высших учебных заведений (1956, 1962) и автором учебников психологии для педучилищ (1974, 1980, 1985). Все эти книги хорошо известны преподавателям и студентам высших и средних учебных педагогических учебных заведений.

Решая вопрос, как лучше представить научное творческое наследие В.А. Крутецкого, его вклад в психологию в серии «Психологи отечества», что именно из этого наследия сделать достоянием современного читателя - научных работников, преподавателей психологии, студентов университетов и педвузов и психологов-практиков, мы остановили свой выбор на его капитальном труде «Психология математических способностей школьников», вышедшем в издательстве «Просвещение» в 1968 году. В этом труде содержатся богатые, хорошо обоснованные и проанализированные фактические данные о природе и структуре математических способностей школьников, которые еще долго будут сохранять свое научное значение. Он может служить хорошим путеводителем по зарубежной и отечественной литературе по данной проблеме вплоть до 1966 года и методической основой для отбора и разработки диагностических и коррекционных тестовых заданий в области школьной математики. В нем обсуждаются многие непростые и дискуссионные теоретические вопросы проблемы способностей, все еще не получившие окончательного удовлетворительного ответа и до сих пор сохраняющие свою актуальность. Эта книга была удостоена I премии АПН РСФСР и переведена в США, Канаде, Англии, Японии и других странах. Отклики на нее В.А. Крутецкий продолжал получать от психологов разных стран вплоть до последних лет своей жизни. Наконец, данная книга интересна с исторической точки зрения для характеристики определенного этапа развития психологии в нашей стране, а именно этапа первых послевоенных 15-20 лет, когда центром психологической науки был Институт психологии АПН РСФСР, в котором В.А. Крутецкий вел свои исследования по психологии математических способностей с 1955 по 1966 годы.

В настоящем издании книга В.А. Крутецкого «Психология математических способностей школьников» печатается с некоторыми сокращениями.

Из раздела I исключены глава I «Теоретическое и практическое значение проблемы математических способностей на современном этапе развития советской науки и школы», §1 главы II «Развитие исследований по психологии способностей за рубежом» и §1 главы IV «Некоторые вопросы общей теории способностей, которые в основном посвящены критике западной тестологии и обсуждению проблемы врожденного и приобретенного в формировании и развитии способностей. В этих главах и параграфе мало оригинального. Их содержание это по сути некоторая обязательная «идеологическая дань» тому времени, когда писалась книга.

Из раздела II исключена глава III «Методика экспериментального исследования», содержание которой в большей мере повторено в следующих главах.

Из главы IV раздела III исключен §6 «Гипотеза об акцепторе математического действия», содержание которого носит слишком гипотетический характер, практически не связанный с полученными автором фактическими данными.

Из главы VII раздела III исключен §3 «О половых различиях в характеристике математических способностей», поскольку его содержание сводится к тому, что в исследованиях автора таких различий не обнаружено.

Исключена глава VIII раздела III «Математические способности и личность», содержание которой во многом повторяет сказанное в других главах книги.

Наконец, по всему тексту сделаны небольшие купюры, которые отмечены отточиями.

Мы не можем предоставить возможность скачать книгу в электронном виде.

Информируем Вас, что часть полнотекстовой литературы по психолого-педагогической тематике содержится в электронной библиотеке МГППУ по адресу http://psychlib.ru . В случае, если публикация находится в открытом доступе, то регистрация не требуется. Часть книг, статей, методических пособий, диссертаций будут доступны после регистрации на сайте библиотеки.

Электронные версии произведений предназначены для использования в образовательных и научных целях.

В исследование математических способностей внесли свой вклад такие представители определенных направлений в психологии, как А. Бинэ, Э. Торндайк и Г. Ревеш, и такие выдающиеся математики, как А.Пуанкаре и Ж. Адамар. Большое разнообразие направлений определяет и большое разнообразие в подходах к исследованию математических способностей. Все ученые сходятся во мнении, что следует различать обычные, «школьные» способности к усвоению математических знаний, к их репродуцированию, самостоятельному применению и творческие математические способности, связанные с самостоятельным созданием оригинального и имеющего общественную ценность продукта.

А. Роджерс отмечает две стороны математических способностей: репродуктивная (связанная с функцией памяти) и продуктивная (связанная с функцией мышления). В. Бетц определяет математические способности как способности ясного осознания внутренней связи математических отношений и способность точно мыслить математическими понятиями.

В статье «Психологи математического мышления» Д. Мордухай-Болтовский придавал особое значение «бессознательному мыслительному процессу», утверждая, что «мышление математика глубоко внедряется в бессознательную сферу, то всплывая на ее поверхность, то погружаясь в глубину. Математик не осознает каждого шага своей мысли, как виртуоз движений смычка». Внезапное появление в сознании готового решения какой-либо задачи, которую мы не можем долго решить, мы объясняем бессознательным мышлением, которое продолжало заниматься задачей, а результат всплывает за порог сознания. По мнению Д. Мордухай-Болтовского, наш ум способен производить кропотливую и сложную работу в подсознании, где и совершается вся «черновая» работа, причем бессознательная работа мысли даже отличается меньшей погрешностью, чем сознательная.

Д. Мордухай-Болтовский отмечает совершенно специфический характер математического таланта и математического мышления. Он утверждает, что способность к математике не всегда присуща даже гениальным людям, что между математическим и нематематическим умом есть существенная разница.

Выделяют следующие компоненты математических способностей:

  • -«сильная память» (память, скорее не на факты, а на идеи и мысли);
  • -«остроумие» как способность «обнимать в одном суждении» понятия из двух малосвязанных областей мысли находить в уже известном сходное с данным, отыскивать сходное в самых отдаленных, совершенно разнородных предметах;
  • -«быстрота мысли» (быстрота мысли объясняется той работой, которую совершает бессознательное мышление в помощь сознательному).

Д. Мордухай-Болтовский различает типы математического воображения, которые лежат в основе разных типов математиков - «алгебраистов» и «геометров». Арифметики, алгебраисты и вообще аналитики, у которых открытие производится в самой абстрактной форме прорывных количественных символов и их взаимоотношений, не могут воображать, так как «геометр».

Отечественная теория способностей создавалась совместным трудом виднейших психологов, из которых в первую очередь надо назвать Б.М. Теплова, а так же Л.С. Выготского, А.Н. Леонтьева, С.Л. Рубинштейна и Б.Г. Ананьева. Помимо общетеоретических исследований проблемы математических способностей, В.А. Крутецкий своей монографией «Психология математических способностей школьников» положил начало экспериментальному анализу структуры математических способностей. Под способностями к изучению математики он понимает индивидуально-психологические особенности (прежде всего особенности умственной деятельности), отвечающие требованиям учебной математической деятельности и обуславливающие при прочих равных условиях успешность творческого овладения математикой как учебным предметом, в частности относительно быстрое, легкое и глубокое овладение знаниями, умениями, навыками в области математики.

Д.Н. Богоявленский и Н.А. Менчинская, говоря об индивидуальных различиях обучаемости детей, вводят понятие психологических свойств, определяющих при прочих равных условиях успех в учении.

Математические способности - сложное структурное психическое образование, своеобразный синтез свойств, интегральное качество ума, охватывающее разнообразные его стороны и развивающееся в процессе математической деятельности. Указанная совокупность представляет собой единое качественно-своеобразное целое, - только в целях анализа мы выделяем отдельные компоненты, не рассматривая их как изолированные свойства. Эти компоненты тесно связаны, влияют друг на друга и образуют в своей совокупности единую систему, проявление которой называют «синдромом математической одаренности».

Большой вклад в разработку данной проблемы внес В.А. Крутецкий . Собранный им экспериментальный материал позволяет говорить о компонентах, занимающих существенное место в структуре такого интегрального качества ума, как математическая одаренность. В.А. Крутецкий представил схему структуры математических способностей в школьном возрасте:

  • · Получение математической информации (способность к формализованному восприятию математического материала, охватыванию формальной структуры задачи).
  • · Переработка математической информации
  • А)Способность к логическому мышлению в сфере количественных и пространственных отношений, числовой и знаковой символики. Способность мыслить математическими символами.
  • Б)Способность к быстрому и широкому обобщению математических объектов, отношений и действий.
  • В)способность к свертыванию процесса математического рассуждения и системы соответствующих действий. Способность мыслить свернутыми структурами.
  • Г)Гибкость мыслительных процессов в математической деятельности.
  • Д)Стремление к ясности, простоте, экономности и рациональности решений.
  • Е)Способность к быстрой и свободной перестройке направленности мыслительного процесса, переключение с прямого на обратный ход мысли (обратимость мыслительного процесса при математическом рассуждении).
  • · Хранение математической информации.

Математическая память (обобщенная память на математические отношения, типовые характеристики, схемы рассуждений, доказательств, методы решения задач и принципы подхода к ним).

· Общий синтетический компонент. Математическая направленность ума.

Не входят в структуру математической одаренности те компоненты, наличие которых в этой структуре не обязательно. Они являются нейтральными по отношению к математической одаренности. Однако их наличие или отсутствие в структуре (точнее степень развития) определяют типы математического склада ума. Быстрота мыслительных процессов как временная характеристика, индивидуальный темп работы не имеют решающего значения. Математик может размышлять неторопливо, даже медленно, но очень обстоятельно и глубоко. Также к нейтральным компонентам можно отнести вычислительные способности (способности к быстрым и точным вычислениям, часто в уме). Известно, что есть люди, способные воспроизводить в уме сложные математические вычисления (почти мгновенное возведение в квадрат и куб трехзначных чисел), но не умеющие решать сколько-нибудь сложные задачи. Известно также, что существовали и существуют феноменальные «счетчики» не давшие математике ничего, а выдающийся математик А. Пуанкре писал о себе, что без ошибки не может сделать даже сложение.

Память на цифры, формулы и числа является нейтральной по отношению к математической одаренности. Как указывал академик А.Н. Коломогоров, многие выдающиеся математики не обладали сколько-нибудь выдающейся памятью такого рода.

Способность к пространственным представлениям, способность наглядно представлять абстрактные математические отношения и зависимости также составляют нейтральный компонент.

Важно отметить, что схема структуры математических способностей имеет в виду математические способности школьника. Нельзя сказать в какой мере ее можно считать общей схемой структуры математических способностей, в какой мере ее можно отнести к вполне сложившимся одаренным математикам.

Известно, что в любой области науки одаренность как качественное сочетание способностей всегда многообразна и в каждом отдельном случае своеобразна. Но при качественном многообразии одаренности всегда можно наметить какие-то основные типологические характеристики различия в структуре одаренности, выделить определенные типы, значительно отличающиеся один от другого, разными путями приходящие с одинаково высокими достижениями в соответствующей области.

Об аналитическом и геометрическом типах упоминается в работах А. Пуанкре, Ж. Адамара, Д. Мордухай-Болтовского, но с этими терминами у них связывается скорее логический, интуитивный пути творчества в математике.

Из отечественных исследователей вопросами индивидуальных различий учащихся при решении задач с точки зрения соотношения абстрактных и образных компонентов мышления много занималась Н.А. Менчинская. Она выделяла учащихся с относительным преобладанием: а) образного мышления над абстрактным в) гармоническим развитием обоих видов мышления.

Нельзя думать, что аналитический тип проявляется только в алгебре, а геометрический - в геометрии. Аналитический склад может проявляться в геометрии, а геометрический - в алгебре. В.А. Крутецкий дал развернутую характеристику каждого типа.

Аналитический тип. Мышление этого типа характеризуется преобладанием очень хорошо развитого словесно-логического компонента над слабым наглядно-образным. Они легко оперируют отвлеченными схемами. У них нет потребности в наглядных опорах, в использовании предметной или схематической наглядности при решении задач, даже таких, когда данные в задаче математические отношения и зависимости «наталкивают» на наглядные представления.

Представители этого типа не отличаются способностью наглядно-образного представления и в силу этого используют более трудный и сложный логико-аналитический путь решения там, где опора на образ дает гораздо более простое решение. Они очень успешно решают задачи, выраженные в абстрактной форме, задачи же, выраженные в конкретно-наглядной форме, стараются по возможности переводить в абстрактный план. Операции, связанные с анализом понятий, осуществляются ими легче, чем операции, связанные с анализатором геометрической схемы или чертежа.

  • -Геометрический тип. Мышление представителей этого типа характеризуется очень хорошо развитым наглядно-образным компонентом. В связи с этим можно говорить о преобладании над хорошо развитым словесно-логическим компонентом. Эти учащиеся испытывают потребность в наглядной интерпретации выражения абстрактного материала и демонстрируют большую избирательность в этом отношении. Но если им не удается создать наглядные опоры, использовать предметную или схематическую наглядность при решении задач, то они с трудом оперируют отвлеченными схемами. Они упорно пытаются оперировать наглядными схемами, образами, представлениями даже там, где задача легко решается рассуждением, а использование наглядных опор излишне или затруднительно.
  • -Гармонический тип. Для этого типа характерно равновесие хорошо развитых словесно-логического и наглядно-образного компонента при ведущей роли первого. Пространственные представления у представителей этого типа развиты хорошо. Они избирательны в наглядной интерпретации абстрактных отношений и зависимостей, но наглядные образы и схемы подчинены у них словесно-логическому анализу. Оперируя наглядными образами, эти учащиеся четко осознают, что содержание обобщения не исчерпывается частными случаями. Представители этого типа успешно осуществляют образно-геометрический подход к решению многих задач.

Установленные типы имеют общее значение. Их наличие подтверждается многими исследованиями.

В зарубежной психологии до настоящего времени широко распространены представления о возрастных особенностях математического развития школьника, исходящих из исследований Ж. Пиаже. Пиаже считал, что ребенок только к 12 годам становится способным к абстрактному мышлению . Анализируя стадии развития математических рассуждений подростка, Л. Шоанн пришел к выводу, что в наглядно-конкретном плане школьник мыслит до 12 - 13 лет, а мышление в плане формальной алгебры, связанное с овладением операциями, символами, складывается к 17 годам.

Исследование отечественных психологов дают иные результаты. П.П. Блонский писал об интенсивном развитии у подростка, обобщающего и абстрагирующего мышления, умения доказывать и разбираться в доказательствах . Исследования И.В. Дубровиной дают основание говорить о том, что применительно к возрасту младших школьников мы не можем утверждать о сколько-нибудь сформированной структуре собственно математических способностей, конечно, исключая случаи особой одаренности. Поэтому «понятие математические способности» условно в применении к младшим школьникам - детям 7 - 10 лет, при исследовании компонентов математических способностей в этом возрасте речь может идти лишь об элементарных формах таких компонентов. Но отдельные компоненты математических способностей формируются уже в начальных классах.

Опытное обучение, которое осуществлялось в ряде школ Института психологии (Д.Б. Эльконин, В.В. Давыдов) показывают, что при специальной методике обучения младшие школьники приобретают большую способность к отвлечению и рассуждению, чем принято думать. Однако, хотя возрастные особенности школьника в большей мере зависят от условий, в которых осуществляется обучение, считать, что они целиком создаются обучением, было бы неверно. Поэтому неправильна крайняя точка зрения на этот вопрос, когда считают, что не существует никакой закономерности естественного психического развития. Более эффективная система обучения может «стать» весь процесс, но до известных пределов, может несколько измениться последовательность развития, но не может придать линии развития совершенно иной характер. Здесь не может быть произвольности. Не может, например, способность к обобщению сложных математических отношений и методов сформироваться раньше, чем способность к обобщению простых математических отношений . Таким образом, возрастные особенности - это несколько условное понятие. Поэтому все исследования ориентированы на общую тенденцию, на общее направление развития основных компонентов структуры математических способностей под влиянием обучения.

В зарубежной психологии имеются работы, где сделана попытка выявить отдельные качественные особенности математического мышления мальчиков и девочек. В. Штерн говорит о своем несогласии с той точкой зрения, согласно которой различия в умственной области мужчин и женщин есть результат неодинакового воспитания. По его мнению, причины кроются в разных внутренних задатках. Поэтому женщины менее склонны к абстрактному мышлению и менее способны в этом отношении.

В своих исследованиях Ч. Спирмен и Э. Торндайк пришли к выводу, что «в отношении способностей большой разницы нет», но при этом отмечают большую склонность девочек к детализированию, запоминанию подробностей.

Соответствующие исследования в отечественной психологии были проведены под руководством И.В.Дубровиной и С.И.Шапиро. Они не обнаружили каких-либо качественных специфических особенностей в математическом мышлении мальчиков и девочек. Не указали на эти различия и опрошенные ими учителя.

Разумеется, фактически мальчики чаще обнаруживают математические способности. Победителями в математических олимпиадах чаще бывают мальчики, чем девочки. Но это фактическое различение надо отнести за счет разницы в традициях, в воспитании мальчиков и девочек, за счет распространенного взгляда на мужские и женские профессии. Это приводит к тому, что математика часто оказывается вне направленности интересов девочек.

Исследование математических способностей в зарубежной психологии.

В исследование математических способностей внесли свой вклад и такие яркие представители определенных направлений в психологии, как А. Бинэ, Э. Трондайк и Г. Ревеш, и такие выдающиеся математики, как А. Пуанкаре и Ж. Адамар.

Большое разнообразие направлений определило и большое разнообразие в подходе к исследованию математических способностей, в методических средствах и теоретических обобщениях.

Единственное, в чем сходятся все исследователи, это, пожалуй, мнение о том, что следует различать обычные, «школьные» способности к усвоению математических знаний, к их репродуцированию и самостоятельному применению и творческие математические способности, связанные с самостоятельным созданием оригинального и имеющего общественную ценность продукта.

Большое единство взглядов проявляют зарубежные исследователи по вопросу о врожденности или приобретенности математических способностей. Если и здесь различать два разных аспекта этих способностей - «школьные» и творческие способности, то в отношении вторых существует полное единство - творческие способности ученого-математика являются врожденным образованием, благоприятная среда необходима только для их проявления и развития. В отношении «школьных» (учебных) способностей зарубежные психологи высказываются не столь единодушно. Здесь, пожалуй, доминирует теория параллельного действия двух факторов - биологического потенциала и среды.

Основным вопросом в исследовании математических способностей (как учебных, так и творческих) за рубежом был и остается вопрос о сущности этого сложного психологического образования. В этом плане можно выделить три важные проблемы.

1. Проблема специфичности математических способностей. Существуют ли собственно математические способности как специфическое образование, отличное от категории общего интеллекта? Или математические способности есть качественная специализация общих психических процессов и свойств личности, то есть общие интеллектуальные способности, развитые применительно к математической деятельности? Иначе говоря, можно ли утверждать, что математическая одаренность - это не что иное, как общий интеллект плюс интерес к математике и склонность заниматься ею?

2. Проблема структурности математических способностей. Является ли математическая одаренность унитарным (единым неразложимым) или интегральным (сложным) свойством? В последнем случае можно ставить вопрос о структуре математических способностей, о компонентах этого сложного психического образования.

3. Проблема типологических различий в математических способностях. Существуют ли различные типы математической одаренности или при одной и той же основе имеют место различия только в интересах и склонностях к тем или иным разделам математики?

7. Педагогические способности

Педагогическим способностями называют совокупность индивидуально-психологических особенностей личности учителя, отвечающих требованиям педагогической деятельности и определяющих успех в овладении этой деятельностью. Отличие педагогических способностей от педагогических умений заключается в том, что педагогические способности - это особенности личности, а педагогические умения - это отдельные акты педагогической деятельности, осуществляемые человеком на высоком уровне.

Каждая способность имеет свою структуру, в ней различают ведущие и вспомогательные свойства.

Ведущими свойствами в педагогических способностях являются:

педагогический такт;

наблюдательность;

любовь к детям;

потребность в передаче знаний.

Педагогический такт - это соблюдение педагогом принципа меры в общении с детьми в самых разнообразных сферах деятельности, умение выбрать правильный подход к учащимся.

Педагогический такт предполагает:

· уважение к школьнику и требовательность к нему;

· развитие самостоятельности учащихся во всех видах деятельности и твердое педагогическое руководство их работой;

· внимательность к психическому состоянию школьника и разумность и последовательность требований к нему;

· доверие к учащимся и систематическая проверка их учебной работы;

· педагогически оправданное сочетание делового и эмоционального характера отношений с учениками и др.

Педагогическая наблюдательность - это способность учителя, проявляемая в умении подмечать существенные, характерные, даже малозаметные свойства учащихся. По-другому можно сказать, что педагогическая наблюдательность - это качество личности педагога, заключающееся в высоком уровне развития способности концентрации внимания на том или ином объекте педагогического процесса.

способность математический педагогический

способность школьник математический спортивный

Математика - это инструмент познания, мышления, развития. Он богат возможностями творческого обогащения. Ни один школьный предмет не может конкурировать с возможностями математики в воспитании мыслящей личности. Особое значение математики в умственном развитии отметил еще в ХVIII веке М.В. Ломоносов: "Математику уже затем учить следует, что она ум в порядок приводит".

Существует общепризнанная классификация способностей. Согласно ей способности делятся на общие и специальные, определяющие успехи человека в отдельных видах деятельности и общения, где необходимы особого рода задатки и их развитие (способности математические, технические, литературно-лингвистические, художественно-творческие, спортивные и т.д.).

Математические способности обуславливаются не только хорошей памятью и вниманием. Для математика важно умение уловить порядок элементов, и умение оперировать этими данными. Эта своеобразная интуиция и есть основа математической способности.

В исследование математических способностей внесли свой вклад такие ученые в психологии, как А. Бинэ, Э. Торндайк и Г. Ревеш, и такие выдающиеся математики, как А. Пуанкаре и Ж. Адамар. Большое разнообразие направлений определяет и большое разнообразие в подходах к исследованию математических способностей. Разумеется, исследование математических способностей следует начинать с определения. Попытки такого рода делались неоднократно, но установившегося, удовлетворяющего всех определения математических способностей не имеется до сих пор. Единственное, в чём сходятся все исследователи, это, пожалуй, мнение о том, что следует различать обычные, "школьные" способности к усвоению математических знаний, к их репродуцированию и самостоятельному применению и творческие математические способности, связанные с самостоятельным созданием оригинального и имеющего общественную ценность продукта.

Ещё в 1918 году в работе А. Роджерс отмечались две стороны математических способностей, репродуктивная (связанная с функцией памяти) и продуктивная (связанная с функцией мышления). В. Бетц определяет математические способности как способности ясного осознания внутренней связи математических отношений и способность точно мыслить математическими понятиями.

Из работ отечественных авторов необходимо упомянуть оригинальную статью Д. Мордухай-Болтовского "Психология математического мышления", опубликованную в 1918 году. Автор, специалист математик, писал с идеалистической позиции, придавая, например, особое значение "бессознательному мыслительному процессу", утверждая, что "мышление математика глубоко внедряется в бессознательную сферу, то, всплывая на её поверхность, то погружаясь в глубину. Математик не осознает каждого шага своей мысли, как виртуоз движения смычка" [цит. по 13, с. 45]. Внезапное появление в сознание готового решения какой-либо задачи, которую мы не можем долго решить, - пишет автор, - мы объясняем бессознательным мышлением, которое продолжало заниматься задачей, а результат всплывает за порог сознания [цит. по 13, с. 48]. По мнению Мордухай-Болтовского наш ум способен производить кропотливую и сложную работу в подсознании, где и совершается вся "черновая" работа, причём бессознательная работа мысли даже отличается меньшей погрешностью, чем сознательная.

Автор отмечает совершенно специфический характер математического таланта и математического мышления. Он утверждает, что способность к математике не всегда присуще даже гениальным людям, что между математическим и нематематическим умом есть существенная разница. Большой интерес представляет попытка Мордухай-Болтовского выделить компоненты математических способностей. К таким компонентам он относит в частности:

  • * "сильную память", память на "предметы того типа, с которыми имеет дело математика", память скорее не на факты, а на идеи и мысли.
  • * "остроумие", под которым понимается способность "обнимать в одном суждении" понятия из двух малосвязанных областей мысли, находить в уже известном сходное с данным, отыскивать сходное в самых отдалённых казалось бы, совершенно разнородных предметах.
  • * быстроту мысли (быстрота мысли объясняется той работой, которую совершает бессознательное мышление в помощь сознательному). Бессознательное мышление, по мнению автора, протекает гораздо быстрее, чем сознательное.

Д. Мордухай-Болтовский высказывает так же свои соображения по поводу типов математического воображения, которые лежат в основе разных типов математиков - "геометров" и "алгебраистов". Арифметики, алгебраисты и вообще аналитики, у которых открытие производится в самой абстрактной форме прорывных количественных символов и их взаимоотношений, не могут воображать так, как "геометр".

Д.Н. Богоявленский и Н.А. Менчинская, говоря об индивидуальных различиях в обучаемости детей, вводит понятие психологических свойств, определяющих при прочих равных условиях успех в учении. Они не употребляют термина "способности", но по существу соответствующее понятие близко к тому определению, которое дано выше.

Математические способности - сложное структурное психическое образование, своеобразный синтез свойств, интегральное качество ума, охватывающее разнообразные его стороны и развивающееся в процессе математической деятельности. Указанная совокупность представляет собой единое качественно-своеобразное целое, - только в целях анализа мы выделяем отдельные компоненты, отнюдь не рассматривая их как изолированные свойства. Эти компоненты тесно связаны, влияют друг на друга и образуют в своей совокупности единую систему, проявления которой мы условно называем "синдром математической одаренности".

Говоря о структуре математических способностей, следует отметить вклад в разработку данной проблемы В.А. Крутецкого. Собранный им экспериментальный материал позволяет говорить о компонентах, занимающих существенное место в структуре такого интегрального качества ума, как математическая одарённость.