Понятие парадигмы программирования. Парадигмы программирования Декларативная и процедурная память

Парадигма программирования - это совокупность идей и понятий, определяющая стиль написания программ.

Императи́вная парадигма описывает процесс вычисления в виде инструкций, изменяющих состояние программы. Императивная программа очень похожа на приказы, выражаемые повелительным наклонением в естественных языках, то есть это последовательность команд, которые должен выполнить компьютер. Основана на модели конечного автомата Тьюринга-Поста.

Первыми императивными языками были машинные коды - родной язык программирования для компьютера. В этих языках инструкции были крайне просты, что снижало нагрузку на компьютеры, однако затрудняло написание крупных программ. В 1954 появился первый «человеческий» язык программирования - FORTRAN, затем ALGOL, COBOL, BASIC, Pascal, C.

Одна из характерных черт императивного программирования - наличие переменных с операцией "разрушающего присвоения". То есть, была переменная А, было у нее значение Х. Алгоритм предписывает на очередном шаге присвоить переменной А значение Y. То значение, которое было у А, будет "навсегда забыто".

Императивное программирование наиболее пригодно для реализации небольших подзадач, где очень важна скорость исполнения на современных компьютерах. Кроме этого, работа с внешними устройствами, как правило, описывается в терминах последовательного исполнения операций ("открыть кран, набрать воды"), что делает такие задачи идеальными кандидатами на императивную реализацию.

Выбор рамок императивной парадигмы для обучения основам программирования, по-видимому, ни у кого не вызывает сомнения. Этому есть несколько причин:

· императивная парадигма наиболее близка природе человека и интуитивному понятию алгоритма на ранних стадиях развития мышления (есть положительный опыт развивающего обучения с элементами алгоритмизации уже в начальной школе);

· программирование в рамках императивной парадигмы эффективно для широкого класса задач, многие из которых попадают в зону ближайшего развития учащихся в старших классах базовой школы;

· императивная парадигма наиболее близка природе компьютера, основным принципам его функционирования, так как, не смотря на всю сложность современного компьютера, на уровне аппаратной части его можно по-прежнему рассматривать как некоторый автомат (процессор+память+…) с конечным множеством состояний (содержимого памяти);

· доля программных продуктов, созданных исключительно в рамках декларативной парадигмы программирования мала; как правило, при решении задач используется сочетание парадигм, одной из которых является императивная;

· большой выбор систем программирования в виде самостоятельных программных средств и в виде интегрированных в другие системы подсистем, позволяющих разрабатывать программные продукты с использованием императивной парадигмы;


· обширная номенклатура учебных, справочных и прочих публикаций по соответствующим системам программирования в бумажном и электронном видах на различных носителях и в глобальной сети.

Недостаток: в чистом виде позволяет решать только очень простые задачи.

Событийно-управляемое программирование - программирование, при котором задаются реакции программы на различные события (действия пользователя). СУП можно рассматривать как «потомок» императивной парадигмы. СУП имеет 2 подкласса:

1.Параллельное программирование представляет программу в виде набора сообщающихся процессов, которые могут выполняться параллельно. Такие программы могут выполняться как на одном процессоре (чередуя выполнение шагов каждого процесса), так и на нескольких.

В системе параллельных процессов каждый отдельный процесс обрабатывает события. События могут быть как общими для всей системы, так и индивидуальными для одного или нескольких процессов. В таких терминах достаточно удобно описывать, например, элементы графического интерфейса пользователя, или моделирование каких-либо реальных процессов (например, управление уличным движением) - так как понятие события является для таких задач естественным.

2.Объектно-ориентированное программирование - технология программирования, при которой программа рассматривается как набор объектов и их взаимодействий. Каждый объект программы является экземпляром некоторого класса; - классы могут наследовать атрибуты и методы их родительских классов, в то же время добавляя свои собственные. Иерархия классов позволяет моделировать сущности решаемой задачи на нескольких уровнях детализации и в дальнейшем использовать класс, отвечающий уровню детализации, необходимому для решения конкретной подзадачи.

Важно выделить следующие основные свойства объектов:

1.) Так как один объект может воздействовать на другой исключительно при помощи посылки последнему сообщений, он не может как-либо непосредственно работать с собственными данными "собеседника", и, следовательно, не может нарушить их внутреннюю согласованность. Это свойство (сокрытие данных) принято называть инкапсуляцией.

2.) Так как объекты взаимодействуют исключительно за счет обмена сообщениями, объекты-собеседники могут ничего не знать о реализации обработчиков сообщений у своего визави. Взаимодействие происходит исключительно в терминах сообщений/событий, которые достаточно легко привязать к предметной области. Это свойство (описание взаимодействия исключительно в терминах предметной области) называют абстракцией.

3.) Объекты взаимодействуют исключительно через посылку сообщений друг другу. Поэтому если в каком-либо сценарии взаимодействия объектов заменить произвольный объект другим, способным обрабатывать те же сообщения, сценарий так же будет реализуем. Это свойство (возможность подмены объекта другим объектом со сходной структурой класса) называется полиморфизмом.

Многие современные языки поддерживают ООП, хотя и в разной степени: - чисто объектно-ориентированные языки, например, Smalltalk и Ruby, разработаны для того, чтобы поддерживать и даже навязывать объектно-ориентированный стиль разработки, и не поддерживают другие стили программирования; - преимущественно объектно-ориентированные языки, например, Java, C++ и Python, разработаны в основном для поддержки ООП, но позволяют использовать элементы процедурного программирования; - исторически процедурные языки, например, Perl и Fortran 2002, были доработаны и в них была добавлена поддержка некоторых элементов ООП.

Декларативная парадигма программирования определяет процесс вычислений посредством описания логики самого вычисления, а не управляющей логики программы.

Декларативное программирование является противоположностью императивного программирования; первое описывает, что необходимо сделать, а второе - как именно это сделать.

Наиболее важными разновидностями декларативного программирования, являются функциональное и логическое (или реляционное) программирование.

1.Функциональное программирование представляет собой одну из альтернатив императивному подходу. Оно основано на лямбда-исчислении Черча. В императивном программировании алгоритмы - это описания последовательно исполняемых операций. Здесь существует понятие "текущего шага исполнения" (то есть, времени), и "текущего состояния", которое меняется с течением этого времени.

В функциональном программировании понятие времени отсутствует. Программы являются выражениями, исполнение программ заключается в вычислении этих выражений.

Так как порядок вычисления подвыражений не имеет значения, функциональное программирование может быть естественным образом реализовано на платформах, поддерживающих параллелизм.

Функциональное программирование, как и другие модели "неимперативного" программирования, обычно применяется для решения задач, которые трудно сформулировать в терминах последовательных операций. Практически все задачи, связанные с искусственным интеллектом, попадают в эту категорию. Среди них следует отметить задачи распознавания образов, общение с пользователем на естественном языке, реализацию экспертных систем, автоматизированное доказательство теорем, символьные вычисления. Эти задачи далеки от традиционного прикладного программирования, поэтому им уделяется не так много внимания в учебных программах по информатике.

Логическое программирование

В функциональном программировании программы - это выражения, и их исполнение заключается в вычислении их значения. В логическом программировании программа представляет из себя некоторую теорию (описанную на достаточно ограниченном языке), и утверждение, которое нужно доказать. В доказательстве этого утверждения и будет заключаться исполнение программы.

Логическое программирование и язык Пролог появились в результате исследования в области анализа естественных языков. Впоследствии было обнаружено, что логическое программирование столь же эффективно в реализации других задач искусственного интеллекта.

Логическое программирование допускает естественную параллельную реализацию.

Получилось так, что те парадигмы, которые раньше потом и кровью пробивались в свет через орды приверженцев традиционных методов постепенно забываются. Эти парадигмы возникли на заре программирования и то, почему они возникали, какие преимущества они давали и почему используются до сих пор полезно знать любому разработчику.

Ладно. Введение это очень весело, но вы его все равно не читаете, так что кому интересно - добро пожаловать под кат!

Императивное программирование



Исторически сложилось так, что подавляющее большинство вычислительной техники, которую мы программируем имеет состояние и программируется инструкциями, поэтому первые языки программирования в основном были чисто императивными, т.е. не поддерживали никаких парадигм кроме императивной.

Это были машинные коды, языки ассемблера и ранние высокоуровневые языки, вроде Fortran.

Ключевые моменты:

В этой парадигме вычисления описываются в виде инструкций, шаг за шагом изменяющих состояние программы.

В низкоуровневых языках (таких как язык ассемблера) состоянием могут быть память, регистры и флаги, а инструкциями - те команды, что поддерживает целевой процессор.

В более высокоуровневых (таких как Си) состояние - это только память, инструкции могут быть сложнее и вызывать выделение и освобождение памяти в процессе своей работы.

В совсем высокоуровневых (таких как Python, если на нем программировать императивно) состояние ограничивается лишь переменными, а команды могут представлять собой комплексные операции, которые на ассемблере занимали бы сотни строк.

Основные понятия:

- Инструкция
- Состояние

Порожденные понятия:

- Присваивание
- Переход
- Память
- Указатель

Как основную:
- Языки ассемблера
- Fortran
- Algol
- Cobol
- Pascal
- C
- C++
- Ada
Как вспомогательную:
- Python
- Ruby
- Java
- C#
- PHP
- Haskell (через монады)

Стоит заметить, что большая часть современных языков в той или иной степени поддерживает императивное программирование. Даже на чистом функциональном языке Haskell можно писать императивно.

Структурное программирование



Структурное программирование - парадигма программирования (также часто встречающееся определение - методология разработки), которая была первым большим шагом в развитии программирования.

Основоположниками структурного программирования были такие знаменитые люди как Э. Дейкстра и Н. Вирт.

Языками-первопроходцами в этой парадигме были Fortran, Algol и B, позже их приемниками стали Pascal и C.

Ключевые моменты:

Эта парадигма вводит новые понятия, объединяющие часто используемые шаблоны написания императивного кода.

В структурном программировании мы по прежнему оперируем состоянием и инструкциями, однако вводится понятие составной инструкции (блока), инструкций ветвления и цикла.

Благодаря этим простым изменениям возможно отказаться от оператора goto в большинстве случаев, что упрощает код.

Иногда goto все-же делает код читабельнее, благодаря чему он до сих пор широко используется, несмотря на все заявления его противников.

Основные понятия:

- Блок
- Цикл
- Ветвление

Языки поддерживающие данную парадигму:

Как основную:
- C
- Pascal
- Basic
Как вспомогательную:
- C#
- Java
- Python
- Ruby
- JavaScript

Поддерживают частично:
- Некоторые макроассемблеры (через макросы)

Опять-же большая часть современных языков поддерживают структурную парадигму.

Процедурное программирование



Опять-же возрастающая сложность программного обеспечения заставила программистов искать другие способы описывать вычисления.

Собственно еще раз были введены дополнительные понятия, которые позволили по-новому взглянуть на программирование.

Этим понятием на этот раз была процедура.

В результате возникла новая методология написания программ, которая приветствуется и по сей день - исходная задача разбивается на меньшие (с помощью процедур) и это происходит до тех пор, пока решение всех конкретных процедур не окажется тривиальным.

Ключевые моменты:

Процедура - самостоятельный участок кода, который можно выполнить как одну инструкцию.

В современном программировании процедура может иметь несколько точек выхода (return в C-подобных языках), несколько точек входа (с помощью yield в Python или статических локальных переменных в C++), иметь аргументы, возвращать значение как результат своего выполнения, быть перегруженной по количеству или типу параметров и много чего еще.

Основные понятия:

- Процедура

Порожденные понятия:

- Вызов
- Аргументы
- Возврат
- Рекурсия
- Перегрузка

Языки поддерживающие данную парадигму:

Как основную:
- C
- C++
- Pascal
- Object Pascal
Как вспомогательную:
- C#
- Java
- Ruby
- Python
- JavaScript

Поддерживают частично:
- Ранний Basic

Стоит отметить, что несколько точек входа из всех этих языков поддерживаются только в Python.

Модульное программирование



Который раз увеличивающаяся сложность программ заставила разработчиков разделять свой код. На этот раз процедур было недостаточно и в этот раз было введено новое понятие - модуль.

Забегая вперед скажу, что модули тоже оказались неспособны сдержать с невероятной скоростью растущую сложность ПО и в последствии появились пакеты (это тоже модульное программирование), классы (это уже ООП), шаблоны (обобщенное программирование).

Программа описанная в стиле модульного программирования - это набор модулей. Что внутри, классы, императивный код или чистые функции - не важно.

Благодаря модулям впервые в программировании появилась серьезная инкапсуляция - возможно использовать какие-либо сущности внутри модуля, но не показывать их внешнему миру.

Ключевые моменты:

Модуль - это отдельная именованная сущность программы, которая объединяет в себе другие программные единицы, близкие по функциональности.

Например файл List.mod включающий в себя класс List
и функции для работы с ним - модуль.

Папка Geometry, содержащая модули Shape, Rectangle и Triangle - тоже модуль, хоть и некоторые языки разделяют понятие модуля и пакета (в таких языках пакет - набор модулей и/или набор других пакетов).

Модули можно импортировать (подключать), для того, чтобы использовать объявленные в них сущности.

Основные понятия:

- Модуль
- Импортирование

Порожденные понятия:

- Пакет
- Инкапсуляция

Языки поддерживающие данную парадигму:

Как основную:
- Haskell
- Pascal
- Python
Как вспомогательную:
- Java
- C#
- ActionScript 3

Поддерживают частично:
- C/C++

В некоторых языках для модулей введены отдельные абстракции, в других же для реализации модулей можно использовать заголовочные файлы (в C/C++), пространства имен, статические классы и/или динамически подключаемые библиотеки.

Вместо заключения

В данной статье я не описал популярные сейчас объектно-ориентированное, обобщенное и функциональное программирование. Просто потому, что у меня есть свое, довольно радикальное мнение на этот счет и я не хотел разводить холивар. По крайней мере сейчас. Если тема окажется полезной для сообщества я планирую написать несколько статей, изложив основы каждой из этих парадигм подробно.

Также я ничего не написал про экзотические парадигмы, вроде автоматного, аппликативного, аспект/агент/компонент-ориентированного программирования. Я не хотел делать статью сильно большой и опять-же если тема будет востребована, я напишу и об этих парадигмах, возможно более подробно и с примерами кода.

Лекция № Парадигмы программирования. Императивное программирование.

    Понятие парадигмы программирования.

    Класификация парадигм программирования.

    Императивное программирование.

  1. Понятие парадигмы программирования.

Парадигма программирования - это совокупность подходов, методов, стратегий, идей и понятий, определяющая стиль написания программ.

Парадигма программирования в современной индустрии программирования очень часто определяется набором инструментов программиста (язык программирования и операционная система).

Парадигма программирования представляет (и определяет) то, как программист видит выполнение программы. Например, в объектно-ориентированном программировании программист рассматривает программу как набор взаимодействующих объектов, тогда как в функциональном программировании программа представляется в виде цепочки вычисления функций.

Приверженность определённого человека какой-то одной парадигме иногда носит настолько сильный характер, что споры о преимуществах и недостатках различных парадигм относятся в околокомпьютерных кругах к разряду так называемых «религиозных» войн.

История термина

Своим современным значением в научно-технической области термин «парадигма» обязан, по-видимому, Томасу Куну и его книге «Структура научных революций» (см. парадигма). Кун называл парадигмами устоявшиеся системы научных взглядов, в рамках которых ведутся исследования. Согласно Куну, в процессе развития научной дисциплины может произойти замена одной парадигмы на другую (как, например, геоцентрическая небесная механика Птолемея сменилась гелиоцентрической системой Коперника), при этом старая парадигма ещё продолжает некоторое время существовать и даже развиваться благодаря тому, что многие её сторонники оказываются по тем или иным причинам неспособны перестроиться для работы в другой парадигме.

Термин «парадигма программирования» впервые применил Роберт Флойд в своей лекции лауреата премии Тьюринга.

Флойд отмечает, что в программировании можно наблюдать явление, подобное парадигмам Куна, но, в отличие от них, парадигмы программирования не являются взаимоисключающими:

Если прогресс искусства программирования в целом требует постоянного изобретения и усовершенствования парадигм, то совершенствование искусства отдельного программиста требует, чтобы он расширял свой репертуар парадигм.

Таким образом, по мнению Роберта Флойда, в отличие от парадигм в научном мире, описанных Куном, парадигмы программирования могут сочетаться, обогащая инструментарий программиста.

2.Классификация парадигм программирования.

Ведущая парадигма прикладного программирования на основе императивного управления и процедурно-операторного стиля построения программ получила популярность более пятидесяти лет назад в сфере узкопрофессиональной деятельности специалистов по организации вычислительных и информационных процессов. Последнее десятилетие резко расширило географию информатики, распространив ее на сферу массового общения и досуга. Это меняет критерии оценки информационных систем и предпочтения в выборе средств и методов обработки информации.

Общие парадигмы программирования, сложившиеся в самом начале эры компью-терного программирования, - парадигмы прикладного, теоретического и функцио-нального программирования в том числе, имеют наиболее устойчивый характер.

Прикладное программирование подчинено проблемной направленности, отражающей компьютеризацию информационных и вычислительных процессов численной обработки, исследованных задолго до появления ЭВМ. Именно здесь быстро проявился явный практический результат. Естественно, в таких областях программирование мало отличается от кодирования, для него, как правило, достаточно операторного стиля представления действий. В практике прикладного программирования принято доверять проверенным шаблонам и библиотекам процедур, избегать рискованных экспериментов. Ценится точность и устойчивость научных расчетов. Язык Фортран - ветеран прикладного программирования. Лишь в последнее десятилетие он стал несколько уступать в этой области Паскалю-Си, а на суперкомпьютерах - языкам параллельного программирования, таким как Sisal. [, , , ]

Теоретическое программирование придерживается публикационной направленности, нацеленной на сопоставимость результатов научных экспериментов в области программирования и информатики. Программирование пытается выразить свои формальные модели, показать их значимость и фундаментальность. Эти модели унаследовали основные черты родственных математических понятий и утвердились как алгоритмический подход в информатике. Стремление к доказательности построений и оценка их эффективности, правдоподобия, правильности, корректности и других формализуемых отношений на схемах и текстах программ послужили основой структурного программирования [, ] и других методик достижения надежности процесса разработки программ, например, грамотное программирование . Стандартные подмножества Алгола и Паскаля, послужившие рабочим материалом для теории программирования, сменились более удобными для экспериментирования аппликативными языками, такими как ML, Miranda, Scheme и другие диалекты Лиспа. Теперь к ним присоединяются подмножества C и Java.

Функциональное программирование сформировалось как дань математической направленности при исследовании и развитии искусственного интеллекта и освоении новых горизонтов в информатике. Абстрактный подход к представлению информации, лаконичный, универсальный стиль построения функций, ясность обстановки исполнения для разных категорий функций, свобода рекурсивных построений, доверие интуиции математика и исследователя, уклонение от бремени преждевременного решения непринципиальных проблем распределения памяти, отказ от необоснованных ограничений на область действия определений - все это увязано Джоном Мак-Карти в идее языка Лисп . Продуманность и методическая обоснованность первых реализаций Лиспа позволила быстро накопить опыт решения новых задач, подготовить их для прикладного и теоретического программирования. В настоящее время существуют сотни функциональных языков программирования, ориентированных на разные классы задач и виды технических средств. [,,,,,,]

Основные средства и методы программирования сложились по мере возрастания сложности решаемых задач. Произошло расслоение парадигм программирования в зависимости от глубины и общности проработки технических деталей организации процессов компьютерной обработки информации. Выделились разные стили программирования, наиболее зрелые из которых - низкоуровневое (машинно-ориентированное), системное, декларативно-логическое, оптимизационно-трансформационное, и высокопроизводительное/параллельное программирование.

Низкоуровневое программирование характеризуется аппаратным подходом к организации работы компьютера, нацеленным на доступ к любым возможностям оборудования. В центре внимания - конфигурация оборудования, состояние памяти, команды, передачи управления, очередность событий, исключения и неожиданности, время реакции устройств и успешность реагирования. Ассемблер в качестве предпочтительного изобразительного средства на некоторое время уступил языкам Паскаль и Си даже в области микропрограммирования, но усовершенствование пользовательского интерфейса может восстановить его позиции. [,,,]

Системное программирование долгое время развивалось под прессом сервисных и заказных работ. Свойственный таким работам производственный подход опирается на предпочтение воспроизводимых процессов и стабильных программ, разрабатываемых для многократного использования. Для таких программ оправдана компиляционная схема обработки, статический анализ свойств, автоматизированная оптимизация и контроль. В этой области доминирует императивно-процедурный стиль программирования, являющийся непосредственным обобщением операторного стиля прикладного программирования. Он допускает некоторую стандартизацию и модульное программирование, но обрастает довольно сложными построениями, спецификациями, методами тестирования, средствами интеграции программ и т.п. Жесткость требований к эффективности и надежности удовлетворяется разработкой профессионального инструментария, использующего сложные ассоциативно семантические эвристики наряду с методами синтаксически-управляемого конструирования и генерации программ. Бесспорный потенциал такого инструментария на практике ограничен трудоемкостью освоения - возникает квалификационный ценз .

Высокопроизводительное программирование нацелено на достижение предельно возможных характеристик при решении особо важных задач. Естественный резерв производительности компьютеров - параллельные процессы. Их организация требует детального учета временных отношений и неимперативного стиля управления действиями. Суперкомпьютеры, поддерживающие высокопроизводительные вычисления, потребовали особой техники системного программирования. Графово-сетевой подход к представлению систем и процессов для параллельных архитектур получил выражение в специализированных языках параллельного программирования и суперкомпиляторах, приспособленных для отображения абстрактной иерархии процессов уровня задач на конкретную пространственную структуру процессоров реального оборудования [,,].

Декларативное (логическое) программирование возникло как упрощение функционального программирования для математиков и лингвистов, решающих задачи символьной обработки. Особенно привлекательна возможность в качестве понятийной основы использовать недетерминизм, освобождающий от преждевременных упорядочений при программировании обработки формул. Продукционный стиль порождения процессов с возвратами обладает достаточной естественностью для лингвистического подхода к уточнению формализованных знаний экспертами, снижает стартовый барьер внедрения информационных систем.

Трансформационное программирование методологически объединило технику оптимизации программ, макрогенерации и частичных вычислений. Центральное понятие в этой области - эквивалентность информации. Она проявляется в определении преобразований программ и процессов, в поиске критериев применимости преобразований, в выборе стратегии их использования. Смешанные вычисления, отложенные действия, "ленивое" программирование, задержанные процессы и т.п. используются как методы повышения эффективности информационной обработки при некоторых дополнительно выявляемых условиях. [,]

Дальнейшее развитие парадигм программирования отражает изменение круга лиц, заинтересованных в применении информационных систем. Формирование экстенсивных подходов к программированию - естественная реакция на радикальное улучшение эксплуатационных характеристик оборудования и компьютерных сетей. Происходит переход вычислительных средств из класса технических инструментов в класс бытовых приборов. Появилась почва для обновления подходов к программированию, а также возможность реабилитации старых идей, слабо развивавшихся из-за низкой технологичности и производительности ЭВМ. Представляет интерес развитие исследовательского, эволюционного, когнитивного и адаптационного подходов к программированию, создающих перспективу рационального освоения реальных информационных ресурсов и компьютерного потенциала. [,]

Исследовательский подход с учебно-игровым стилем профессионального, обучающего и любительского программирования может дать импульс изобретательности в совершенствовании технологии программирования, не справившейся с кризисными явлениями на прежней элементной базе. [,]

Эволюционный подход с мобильным стилем уточнения программ достаточно явно просматривается в концепции объектно-ориентированного программирования, постепенно перерастающего в субъектно-ориентированное и даже эго-ориентированное программирование. Повторное использование определений и наследование свойств объектов могут удлинить жизненный цикл отлаживаемых информационных обстановок, повысить надежность их функционирования и простоту применения. Когнитивный подход с интероперабельным стилем визуально-интерфейсной разработки открытых систем и использование новых аудио-видео средств и нестандартных устройств открывают пути активизации восприятия сложной информации и упрощения ее адекватной обработки. [,]

Адаптационный подход с эргономичным стилем индивидуализируемого конструирования персонифицированных информационных систем предоставляет информатикам возможность грамотного программирования, организации и обеспечения технологических процессов реального времени, чувствительных к человеческому фактору и переносу систем [,].

Стабилизирующееся в наши дни доминирование одной архитектурной линии, стандартного интерфейса, типовой технологии программирования и т.д. чревато потерей маневренности при обновлении информационных технологий. Особенно уязвимы в этом отношении люди, привыкшие прочно усваивать все раз и навсегда. При изучении языков программирования подобные проблемы обходят за счет одновременного преподавания различных языков программирования или предварительного изложения основы, задающей грамматическую структуру для обобщения понятий, изменяемость которых трудно улавливается на упрощенных учебных примерах. Именно такую основу дает изучение функционального программирования тем, что оно нацелено на изложение и анализ парадигм, сложившихся в практике программирования в разных областях деятельности с различным уровнем квалификации специалистов, что может быть полезно как концептуальная основа при изучении новых явлений в информатике.

Парадигма программирования является инструментом формирования профессионального поведения. Информатика прошла путь от профессионального программирования высококвалифицированной элиты технических специалистов и научных работников до свободного времяпрепровождения активной части цивилизованного общества. Освоение информационных систем через понимание с целью компетентных действий и ответственного применения техники сменилось интуитивными навыками хаотичного воздействия на информационную среду со скромной надеждой на везение, без претензий на знание. Обслуживание центров коллективного пользования, профессиональная поддержка целостности информации и подготовки данных почти полностью отступили перед самообслуживанием персональных компьютеров, независимым функционированием сетей и разнородных серверов со взаимодействием различных коммуникаций.

Противопоставление разрабатываемых программ, обрабатываемых данных и управления заданиями уступает представлению об интерфейсах, приспособленных для участия в информационных потоках подобно навигации. Прежние критерии качества: скорость, экономия памяти и надежность обработки информации - все больше заслоняются игровой привлекательностью и широтой доступа к мировым информационным ресурсам. Замкнутые программные комплексы с известными гарантиями качества и надежности форсированно вытесняются открытыми информационными комплектами с непредсказуемым развитием состава, способов хранения и обработки информации.

Многие важные для практики программирования понятия, такие как события, исключения и ошибки, потенциал, иерархия и ортогональность построений, экстраполяция и точки роста программ, измерение качества и т.д. не достигли достаточного уровня абстрагирования и формализации. Это позволяет прогнозировать развитие парадигм программирования и выбирать учебный материал на перспективу компонентного программирования (COM/DCOM, Corba, UML и др.). Если традиционные средства и методы выделения многократно используемых компонентов подчинялись критерию модульности, понимаемой как оптимальный выбор минимального сопряжения при максимальной функциональности, то современная элементная база допускает оперирование многоконтактными узлами, выполняющими простые операции. [,,,,,]

Эти симптомы обновления парадигмы программирования определяют направление изменений, происходящих в системе базовых понятий, в концепции информации и информатики. Тенденция использования интерпретаторов (точнее неполной компиляции) вместо компиляторов, анонсированная в концепции Java в сравнении с Си, и соблазн объектно-ориентированного программирования на фоне общепринятого императивно-процедурного стиля программирования можно рассматривать как неявное движение к функциональному стилю. Моделирующая сила функциональных формул достаточна для полноценного представления разных парадигм, что позволяет на их основе экстраполировать приобретение практических навыков организации информационных процессов на будущее.

В середине прошлого (20-го) века термин "программирование" не подразумевал связи с компьютером. Можно было увидеть название книги "Программирование для ЭВМ". Теперь по умолчанию этот термин означает организацию процессов на компьютерах и компьютерных сетях.

Программирование как наука существенно отличается от математики и физики с точки зрения оценки результатов. Уровень результатов, полученных физиками и математиками, обычно оценивают специалисты близкой или более высокой квалификации. В оценке результатов программирования большую роль играет оценка пользователя, не претендующего на программистские познания. Поэтому, в отличие от обычных наук, специалисты в области программирования частично выполняют функцию переводчика своих профессиональных терминов в понятия пользователя.

Программирование обладает своим специфичным методом установления достоверности результатов - это компьютерный эксперимент. Если в математике достоверность сводится к доказательным построениям, понятным лишь специалистам, а в физике - к воспроизводимому лабораторному эксперименту, требующему специального оснащения, то компьютерный эксперимент может быть доступен широкой публике.

Еще одна особенность программирования обусловлена его зависимостью от быстро развивающейся электронной технологии. По этой причине программистские знания - это сочетание классики и моды. Конкретные знания модных новинок устаревают, поэтому для быстрого обновления знаний и навыков нужен классический фундамент, прямое назначение которого не вполне очевидно пользователям и новичкам. [,,]

Программирование использует в качестве понятийной базы математический аппарат (теория множеств, теория чисел, алгебра, логика, теория алгоритмов и рекурсивных функций, теория графов и др.)

Критерии качества программы весьма разнообразны. Их значимость по существу зависит от класса задач и условий применения программ:

результативность

надежность

устойчивость

автоматизируемость

эффективное использование ресурсов (время, память, устройства, информация, люди)

удобство разработки и применения

наглядность текста программы

наблюдаемость процесса работы программы

диагностика происходящего

Упорядочение критериев нередко претерпевает изменения по мере развития области применения программы, роста квалификации пользователей, модернизации оборудования, информационных технологий и программотехники. Вытекающее из этого непрерывное развитие пространства, в котором решается задача, вводит дополнительные требования к стилю программирования информационных систем:

гибкость

модифицируемость

улучшаемость

Программирование как наука, искусство и технология исследует и творчески развивает процесс создания и применения программ, определяет средства и методы конструирования программ, с разнообразием которых нам предстоит познакомиться в дальнейших лекциях, посвященных анализу ряда основных парадигм программирования.

Имеются явные сложности классификации языков программирования и определения их принадлежности конкретной парадигме программирования. В данном курсе парадигма программирования характеризуется взаимодействием основных семантических систем, таких как обработка данных, хранение данных и управление обработкой данных. При таком подходе выделятся три категории парадигм:

низкоуровневое программирование;

программирование на языках высокого уровня;

подготовка программ на базе языков сверхвысокого уровня.

Низкоуровневое программирование связано со структурами данных, обусловленными архитектурой и оборудованием. При хранении данных и программ используется глобальная память и автоматная модель управления обработкой данных. [,,,,,,,,]

Программирование на языках высокого уровня приспособлено к заданию структур данных, отражающих природу решаемых задач. Используется иерархия областей видимости структур данных и процедур их обработки, подчиненная структурно-логической модели управления, допускающей сходимость процесса отладки программ. [,,,,,,]

(ОСНОВЫ АЛГОРИТМИЗАЦИИ И ПРОГРАММИРОВАНИЯ)
  • Парадигмы и технологии программирования
    Задачи главы 1. Изучить понятия «парадигма программирования», «технология программирования». 2. Получить общее представление о современных технологиях создания программного обеспечения. 3. Изучить этапы создания структурной программы. 4. Познакомиться с моделями жизненного цикла разработки программного...
  • Парадигмы программирования SE
    SWEBOK включает ряд парадигм программирования См.: Лаврищева Е. М. Парадигмы программирования сборочного типа в программнойинженерии // УКРПрог-2014. № 2-3. С. 121-133. . В его учебные курсы по программированию включены следующие: процедурное программирование (курс CS1011 «Programming fundamentals»),...
    (ПРОГРАММНАЯ ИНЖЕНЕРИЯ И ТЕХНОЛОГИИ ПРОГРАММИРОВАНИЯ СЛОЖНЫХ СИСТЕМ)
  • ПАРАДИГМЫ ПРОГРАММИРОВАНИЯ
    МОДУЛЬНОЕ ПРОГРАММИРОВАНИЕ. БАЗОВЫЕ ПОНЯТИЯ Одна из ключевых проблем современного программирования - повторное использование модулей и компонентов (КПИ). Ими могли быть программы, подпрограммы, алгоритмы, спецификации и т. п., пригодные для использования при разработке новых более сложных ПС....
    (ПРОГРАММНАЯ ИНЖЕНЕРИЯ. ПАРАДИГМЫ, ТЕХНОЛОГИИ И CASE-СРЕДСТВА)
  • Процедурная парадигма
    Процедурная парадигма была хронологически первой и долгое время превалировала. В настоящее время она постепенно уступает свое место объектно-ориентированной парадигме, хотя все еще занимает порядка половины рынка разработки программного обеспечения. Она применяется на всех уровнях разработки программного...
    (АЛГОРИТМИЗАЦИЯ И ПРОГРАММИРОВАНИЕ)
  • Декларативная и процедурная память
    Еще одним самостоятельным, независимым от других способом функциональной организации памяти является ее разделение на декларативную и процедурную. Эти два способа организации памяти имеют вполне понятную функциональную основу. Форма декларативной памяти предназначена для поддержки мыслительных...
    (Психология и педагогика)
  • Общие парадигмы программирования, сложившиеся в самом начале эры компьютерного программирования, парадигмы прикладного, теоретического и функционального программирования в том числе, имеют наиболее устойчивый характер.

    Прикладное программирование подчинено проблемной направленности, отражающей компьютеризацию информационных и вычислительных процессов численной обработки, исследованных задолго до появления ЭВМ. Именно здесь быстро проявился явный практический результат. Естественно, в таких областях программирование мало чем отличается от кодирования, для него, как правило, достаточно операторного стиля представления действий. В практике прикладного программирования принято доверять проверенным шаблонам и библиотекам процедур, избегать рискованных экспериментов. Ценится точность и устойчивость научных расчетов. Язык Фортран -- ветеран прикладного программирования, постепенно стал несколько уступать в этой области Паскалю, Си, а на суперкомпьютерах -- языкам параллельного программирования, таким как Sisal.

    Теоретическое программирование придерживается публикационной направленности, нацеленной на сопоставимость результатов научных экспериментов в области программирования и информатики. Программирование пытается выразить свои формальные модели, показать их значимость и фундаментальность. Эти модели унаследовали основные черты родственных математических понятий и утвердились как алгоритмический подход в информатике. Стремление к доказательности построений и оценка их эффективности, правдоподобия, правильности, корректности и других формализуемых отношений на схемах и текстах программ послужили основой структурированного программирования и других методик достижения надежности процесса разработки программ, например грамотное программирование. Стандартные подмножества Алгола и Паскаля, послужившие рабочим материалом для теории программирования, сменились более удобными для экспериментирования аппликативными языками, такими как ML, Miranda, Scheme, Haskell и другие. Теперь к ним присоединяются нововведения в C и Java.

    Функциональное программирование сформировалось как дань математической направленности при исследовании и развитии искусственного интеллекта и освоении новых горизонтов в информатике. Абстрактный подход к представлению информации, лаконичный, универсальный стиль построения функций, ясность обстановки исполнения для разных категорий функций, свобода рекурсивных построений, доверие интуиции математика и исследователя, уклонение от бремени преждевременного решения непринципиальных проблем распределения памяти, отказ от необоснованных ограничений на область действия определений -- все это увязано Джоном Маккарти в идее языка Лисп. Продуманность и методическая обоснованность первых реализаций Лиспа позволила быстро накопить опыт решения новых задач, подготовить их для прикладного и теоретического программирования. В настоящее время существуют сотни функциональных языков программирования, ориентированных на разные классы задач и виды технических средств.

    Основные парадигмы программирования сложились по мере возрастания сложности решаемых задач. Произошло расслоение средств и методов программирования в зависимости от глубины и общности проработки технических деталей организации процессов компьютерной обработки информации. Выделились разные стили программирования, наиболее зрелые из которых, машиноориентированное, системное, логическое, трансформационное, и высокопроизводительное параллельное программирование.

    Машинно-ориентированное программирование характеризуется аппаратным подходом к организации работы компьютера, нацеленным на доступ к любым возможностям оборудования. В центре внимания -- конфигурация оборудования, состояние памяти, команды, передачи управления, очередность событий, исключения и неожиданности, время реакции устройств и успешность реагирования. Ассемблер в качестве предпочтительного изобразительного средства на некоторое время уступил языкам Паскаль и Си даже в области микропрограммирования, но усовершенствование пользовательского интерфейса может восстановить его позиции.

    Системное программирование долгое время развивалось под прессом сервисных и заказных работ. Свойственный таким работам производственный подход опирается на предпочтение воспроизводимых процессов и стабильных программ, разрабатываемых для многократного использования. Для таких программ оправдана компиляционная схема обработки, статический анализ свойств, автоматизированная оптимизация и контроль. В этой области доминирует императивно - процедурный стиль программирования, являющийся непосредственным обобщением операторного стиля прикладного программирования. Он допускает некоторую стандартизацию и модульное программирование, но обрастает довольно сложными построениями, спецификациями, методами тестирования, средствами интеграции программ и т.п. Жесткость требований к эффективности и надежности удовлетворяется разработкой профессионального инструментария, использующего сложные ассоциативно семантические эвристики наряду с методами синтаксически-управляемого конструирования и генерации программ. Бесспорный потенциал такого инструментария на практике ограничен трудоемкостью освоения -- возникает квалификационный ценз.

    Высокопроизводительное программирование нацелено на достижение предельно возможных характеристик при решении особо важных задач. Естественный резерв производительности компьютеров -- параллельные процессы. Их организация требует детального учета временных отношений и неимперативного стиля управления действиями. Суперкомпьютеры, поддерживающие высокопроизводительные вычисления, потребовали особой техники системного программирования. Графово-сетевой подход к представлению систем и процессов для параллельных архитектур получил выражение в специализированных языках параллельного программирования и суперкомпиляторах, приспособленных для отображения абстрактной иерархии процессов уровня задач на конкретную пространственную структуру процессоров реального оборудования.

    Логическое программирование возникло как упрощение функционального программирования для математиков и лингвистов, решающих задачи символьной обработки. Особенно привлекательна возможность в качестве понятийной основы использовать недетерминизм, освобождающий от преждевременных упорядочений при программировании обработки формул. Продукционный стиль порождения процессов с возвратами обладает достаточной естественностью для лингвистического подхода к уточнению формализованных знаний экспертами, снижает стартовый барьер.

    Трансформационное программирование методологически объединило технику оптимизации программ, макрогенерации и частичных вычислений. Центральное понятие в этой области -- эквивалентность информации. Она проявляется в определении преобразований программ и процессов, в поиске критериев применимости преобразований, в выборе стратегии их использования. Смешанные вычисления, отложенные действия, "ленивое" программирование, задержанные процессы и т.п. используются как методы повышения эффективности информационной обработки при некоторых дополнительно выявляемых условиях.

    Экстенсивные подходы к программированию -- естественная реакция на радикальное улучшение эксплуатационных характеристик оборудования и компьютерных сетей. Происходит переход вычислительных средств из класса технических инструментов в класс бытовых приборов. Появилась почва для обновления подходов к программированию, а также возможность реабилитации старых идей, слабо развивавшихся из-за низкой технологичности и производительности ЭВМ. Представляет интерес формирование исследовательского, эволюционного, когнитивного и адаптационного подходов к программированию, создающих перспективу рационального освоения реальных информационных ресурсов и компьютерного потенциала.

    Исследовательский подход с учебно-игровым стилем профессионального, обучающего и любительского программирования может дать импульс поисковой изобретательности в совершенствовании технологии программирования, не справившейся с кризисными явлениями на прежней элементной базе. Эволюционный подход с мобильным стилем уточнения программ достаточно явно просматривается в концепции объектно-ориентированного программирования, постепенно перерастающего в субъектно-ориентированное. Повторное использование определений и наследование свойств объектов могут удлинить жизненный цикл отлаживаемых информационных обстановок, повысить надежность их функционирования и простоту применения.

    Когнитивный подход с интероперабельным стилем визуально-интерфейсной разработки открытых систем и использование новых аудио-видео средств и нестандартных устройств открывают пути активизации восприятия сложной информации и упрощения ее адекватной обработки.

    Адаптационный подход с эргономичным стилем индивидуализируемого конструирования персонифицированных информационных систем предоставляет информатикам возможность грамотного программирования, организации и обеспечения технологических процессов реального времени, чувствительных к человеческому фактору. Направление развития парадигмы программирования отражает изменение круга лиц, заинтересованных в развитии и применении информационных систем. Многие важные для практики программирования понятия, такие как события, исключения и ошибки, потенциал, иерархия и ортогональность построений, экстраполяция и точки роста программ, измерение качества и т.д. не достигли достаточного уровня абстрагирования и формализации. Это позволяет прогнозировать развитие парадигм программирования и выбирать учебный материал на перспективу компонентного программирования. Если традиционные средства и методы выделения многократно используемых компонентов подчинялись критерию модульности, понимаемой как оптимальный выбор минимального сопряжения при максимальной функциональности, то современная элементная база допускает оперирование много контактными узлами, выполняющими простые операции. Но со всеми этими типами и парадигмами программирования мы можем познакомиться, используя даже Википедию. В настоящее время есть очень широкий спектр развития программирования в разных направлениях.